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Abstract 
 
     This paper presents a benchmarking suite to 
empirically evaluate map-building algorithms in the field 
of intelligent autonomous mobile robots. We suggest that 
one of the more crucial tasks currently facing researchers 
is the provision of a common task, or set of tasks, as a 
means of evaluating different approaches to robot design 
and architecture, and the generation of a common set of 
experimental frameworks to facilitate these different 
approaches. Map building is seen as a key component in 
the evolution of robot control software architecture, and 
forms the basis upon which higher order behaviours such 
as  pursuit and evasion can be designed. This paper 
outlines a set of benchmarks for map-building and briefly 
evaluates their usefulness across a sample set of 
paradigms. 
 
1. Introduction 
 
     In the field of mobile robots, a variety of 
simultaneous localisation and map-building (SLAM) 
approaches can be adopted for model construction.  The 
maps themselves generally fall into two categories [1]: 
• Metric maps, in which the environment is 

decomposed into a 2D or 3D lattice of grids or cells, 
with each cell representing the probability of 
occupancy, as depicted in figure 2 for an 
environment shown in figure 1. 

• Topological maps are graph-oriented models with 
nodes representing structural features of the 
environment, and vertices capturing adjacency and 
ordering info rmation, as depicted in figure 3. 
Topological maps are computable from a metric 
map. 

 
A considerable range of map building paradigms have 
been documented in the literature, ranging from 
probabilistic and Bayesian frameworks, to artificial 
neural networks, to the Cartesian symbolic -oriented 
approach. While empirical results of individual 
paradigms have been presented consistently, very little 
work has been done on developing a benchmarking 

framework to cross compare and contrast sets of map-
building algorithms. 
 

 
Figure 1. The ideal map of a star environment. 

 

  
(a) (b) 
Figure 2. Occupancy grid maps generated for figure 1. 

 
Fig 3. Star ideal map with inscribed Voronoi graph of all 
possible paths in the environment. 
 
     Map-building in static environments is difficult due to 
the following: 
1. Specular reflections from sonar range sensors 

introduce and propagate noise into the model. 



2. Map-building relies on localisation. Dependence on 
odometry is insufficient in itself to guarantee self-
localisation. 

3. The selection of the sonar model itself impacts 
significantly upon the paradigm used to compute 
occupancy values. 

4. Independence assumptions introduced into some of 
the paradigms for reasons of computational 
tractability are only approximations of the true 
theoretical model. 

These difficulties are depicted in figure 2, illustrating the 
difference in quality of the maps generated by alternative 
paradigms when a robot is deployed in an environment 
that corresponds to that shown in figure 1.  
 
     The evaluation of ideal versus generated maps based 
on correlation techniques from the image processing 
domain focus primarily on a cell-by-cell comparison. 
These metrics fail to take into account that [2]: 
1. Maps are artefacts primarily used for navigation  
2. Discrepancies between occupancy values in ideal 

and generated maps will have varying degrees of 
significance.  

 
     This paper presents a benchmarking framework for 
map-building based on:  
1. Baron’s cross correlation coefficient [3].  
2. Martin and Moravec’s map score [4].  
3. An extension of Thrun’s [5] loss metric based on the 

computation of Voroni diagrams from the ideal map, 
estimation of the universe of unique paths, and 
determining their feasibility in the generated maps.  

 
2. In Benchmarking 
 
     One of the more important tasks currently facing 
researchers in the fields of artificial life and embodied 
intelligence is the provision of common benchmarks for 
performance evaluation.  Current benchmarks, while 
useful, have their problems.  We advocate the generation, 
from the bottom up of a common set of experimental 
frameworks, for performance evaluation and 
benchmarking of bio-inspired robots.   
 
     A current de facto standard in this field is RoboCup 
annual challenge. RoboCup operates in four categories: 
simulated teams, a small size league, a middle size 
league, and legged robots.  An example small size robot 
is Khephera, a typical middle sized robot is Pioneer (1/2) 
and The Sony artificial dog fits in the third category.  
There is also a humanoid league.  RoboCup tests skills at 
the individual, the inter-individual, the collective and at 
the competition level. [6] 
 

     Individual skills to be mastered include navigation 
and localisation on the field of play, including the 
selection of optimal paths.  Inter-individual skills include 
the coordination of movements with playing partners in 
order to pass accurately.  At the top level the tasks of 
strategy generation and recognition of opponents’ 
strategies are crucial. 
 
   Criticisms of RoboCup stem from the controlled 
environment in which the robots operate, and the fact 
that soccer playing skills are quite specific and may lead 
to the development of highly focused robots of little use 
for any other task.  Also, the self-localisation problem is 
somewhat constrained by the used of landmarks that 
completely reduce dependence on dense sensor 
matching-oriented paradigms. Also, considering the 
complexity of the task facing the robot teams, how does 
one assign credit to individual components within the 
software architecture, given that there is only one 
reinforcement signal per episode – win or loss. 
 
So while RoboCup may currently be a useful testing bed 
for approaches to Artificial Intelligence and Artificial 
Life, problems exist.  One potential approach, which we 
espouse, involves the provision of a set of specifically 
designed experimental frameworks, and involving tasks 
of increasing complexity, rigorously defined to facilitate 
experimental reproducibility and verification. 
 
 

 
Figure 4 Benchmarking framework.  
 
     The authors advocate, and shown in figure 4, that 
issues of map-building and self-localisation are 
fundamental to the progressing robotic-based research 
[7]. It is also argued that that pursuit and evasion should 
be undertaken prior to RoboCup type applications, 
primarily because the modelling of behaviour and 
interaction can be constrained to just two players.  
Secondly, pursuit and evasion have strong biological and 
game theoretic foundations, and thus provide a 
framework in which scientific modelling of the system 
can be performed, and later validated through 
experimentation [8]. Figure 4 strongly hints that current 



robot competitions should be focused on map building 
and, pursuit and evasion with a map a priori. 
 
3. Metrics for Map Building Paradigms 
 
3.1 Cross Correlation Between Maps 
 
     One possible fitness measure of the map generated by 
the system is calculated using Baron’s cross correlation 
coefficient [1]: 
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This is based on template matching , where CN(y) is the 
cross correlation coefficient, IT is the map to be matched, 
T is the original map being matched against, and <> is 
the average operator.  There are two fundamental 
problems with this approach: 
1. Maps must be anchored precisely along the same 

coordinate system. 
2. This metric makes no allowance for freespace 

readings in the ideal map that are occupied in the 
generated, and vice-versa. 

 
3.2 Map Score 
 
Martin and Moravec [39] developed a map comparison 
measure called Map Score in order to facilitate the 
automatic learning of sensor models.  Unlike correlation, 
map scoring compares two maps on a cell-by-cell basis. 
Given two maps, M and N, the score between them is 
calculated as the sum of the squared differences between 
corresponding cells: 
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where mX,Y is the value of the cell at position (x,y) in map 
M and likewise for nX,Y.. This formula is equivalent to the 
well-known sum of squared error metric used widely in 
machine learning paradigms. This formula works well 
with the application for which it was designed, learning a 
sonar model, since the only requirement is to minimise 
the score/fitness on a single map.   
 
     In order effectively use the map score metric as a 
benchmark, it is necessary to normalise it. The ideal map 
only has three possible values, 0, 0.5, and 1, or empty, 
unknown and occupied respectively.  A naïve method of 
finding the worst map would be to set each empty cell to 
1, each occupied cell to 0, and each unknown cell to 
either 0 or 1.  One could then compute the map score 
between the ideal and worst possible map, and use this as 
a normalising factor. However, this still does not take 
cognizance of the fact that there are places in the map 
that the robot cannot go, for example there may be a 

large expanse of unknown area with no access to it.  It 
therefore is logical to create the worst possible map of an 
environment based on where the robot can go.  This is 
done by setting the empty cells to 1, as above, but only 
change the value of an unknown or occupied cell if it is 
proximal to an empty cell and is detectable from that 
empty cell.  
 
     Another weakness of the Map Scoring technique is 
that mapping algorithms that overestimate the empty 
regions of space. To redress the balance, a second score 
test is used that only compares the occupied cells in both 
maps.  For any two maps M and N, if either the value 
mX,Y >0.5  or nX,Y >0.5, then the squared difference 
between those two cells is added to the final score.  
Otherwise they are ignored.   
 
  3.3  Path Analysis 
 
      Most quantitive analysis presented on the grid maps 
focus on techniques similar to those discussed in the 
earlier part of this chapter – namely comparing the values 
in the cells to each other.  When training a sonar model 
in a small area this is quite a good approach to take, but 
to properly evaluate the worth of a map, one must get 
away from the idea of a map being an isolated The 
purpose of a map is, after all, to enable a robot to get 
from point A to point B as quickly and as safely as 
possible.  However, many researchers ignore the fact that 
a map need not perfectly match the ideal map of an 
environment to be perfectly usable in that environment.  
It is not necessary for a map to be an exact replica of the 
surrounding environment, it is just necessary for it to be 
an abstraction of that environment which, when 
combined with an appropriate path planning algorithm, 
generates a true real world path for the robot to follow.  
It is the quality of these paths that truly give the value of 
the map, a value based on the use to which the map will 
be put rather than a metric based on techniques that can 
be seen as an extension of human vision such as map 
matching and image correlation. To get the true worth of 
a map, two elements of the map must be tested: 
1. The degree to which the robot should be able to plan 

a path from one position to another using the 
generated map, but cannot – false negatives. 

2. The degree to which paths calculated in the 
generated map would cause the robot to collide with 
an obstacle, and are therefore invalid – false 
positives. 

Both of these are tested using only the map to guide the 
robot’s movement.  
 
     There are four steps required to calculate the two 
above items of information from a generated map. 
• Step 1: Calculate all possible paths, in the ideal map 

PI, by generating a Voronoi graph.  Record the end-



points of each path, EI.  For each pair of endpoints in 
EI that have a path between them in the ideal map, 
attempt to create a path in the generated map 
between those two endpoints using a path-planning 
algorithm. 

• Step 2: Count the number of paths between 
endpoints in EI that could not be completed in the 
generated map due to obstacles existing in that map 
where they do not exist in the ideal map – false 
negatives.  The percentage of false negatives is then: 

map Ideal in the edges

map generatedin  paths incomplete

∑
∑

 

• Step 3: Calculate all possible paths in the generated 
map, once again using a Voronoi diagram.  
Superimpose each Voronoi edge from the generated 
map onto the ideal map, and count the percentage of 
edges that pass through occupied spaces, and would 
therefore cause the robot to crash – false positives.   

 
4. Results 
 
The following three occupancy-grid map-building 
paradigms and extensions were evaluated using the 
benchmarking suite: 

• Moravec and Elfes probability-based framework 
with a Gaussian sonar model [9].  

• Mathias and Elves Bayesian-update framework 
with a Gaussian sonar model [10].  

• Konolige’s Bayesian update framework with 
Normal-distribution sonar model, pose buckets 
and dynamic mixture models [11]. 

The extension also evaluated is O’Sullivan’s linear 
feature predictor [2] used to identify specular reflections. 
The results demonstrate that path analysis approach is a 
more intuitive and reliable metric that captures the 
accuracy and reliability of the maps generated. Path 
analysis clearly demonstrated that a framework that 
incorporates a Normal distribution sonar model, pose 
buckets, and linear feature prediction clearly outperforms 
all other combinations.  
 
5. Discussion and Conclusion 
 
The benchmarking suite is now being extended with 
metrics that capture the difficulty posed by an 
environment for map-building paradigms. These metrics 
are based on cycles in the environment, total path 
distance, number and acuteness of corners responsible 
for specular reflections, etc. 
. 
In addition to this, our current focus is on extending the 
benchmarking suite to robot pursuit and evasion. Typical 
metrics captured are tag rates, and some recent work has 

focused on the informational aspect to PE based on a 
measure of entropy. These metrics are behavioural in that 
results are based on observation of external behaviour. It 
is difficult in PE contests there to relate behaviour to the 
underlying mechanics responsible for the agent’s actions. 
This is further exacerbated by virtue of the fact that an 
agent is deployed in a world characterised by uncertainty. 
Current work is focused on introspective metrics for PE 
that facilitates the assignment of credit to paradigms 
responsible for the generation of behaviour. 
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