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Abstract 
     This paper presents a method for detecting specular 
sonar readings called Feature Prediction.  The position 
and orientation of features in the robot’s local space are 
predicted from reliable sonar readings, and confidence 
measures are assigned to each sonar reading to indicate 
the probability that it is reliable.  The confidence values 
are used by map building algorithms to weaken the effect 
of specular sonar readings on the global map, or to 
discard the reading completely if the confidence value is 
sufficiently low.  The Feature Prediction algorithm is 
shown to significantly improve the quality of maps using 
a suite of benchmarks. 
 

1. Introduction 

     One of the greatest challenges in using sonar sensors 
for map building with mobile robots is that of 
compensating for specular reflection  of the sonar beam.  
Sonar sensors detect obstacles by emitting a sound wave, 
which would ideally strike the obstacle and reflect 
diffusely, meaning that it scatters in all directions, 
returning a correct range reading to the sensor.  The 
distance of the object from the sensor is calculated using 
a simple time -of-flight equation, and this information is 
integrated some form of internal representation of the 
environment, e.g. a map.  When the s ound wave strikes a 
smooth flat object at an angle sufficiently distant from 
perpendicular however, it is often reflected away from 
the sonar, resulting in an incorrect noisy range reading, 
as in Fig 1.  The mapping algorithm incorporating the 
sonar range information into a map will then either 
interpret all the space in the sonar beam as freespace if 
no range reading was returned, or place an obstacle 
further from the sensor than is correct if the sonar wave 
struck multiple obstacles before returning to the sensor. 
 
     This paper details a method called Feature 
Prediction, which is used to identify specular readings by 
predicting the state of the world and assigning 
confidence values to each sonar range reading.  Feature 
Prediction identifies reliable sonar readings in each scan, 
and from these extrapolates the position and orientation 
of the features in the environment that caused the sound 
wave to reflect back to the sensor.  These features are 
used to calculate confidence values for each sonar range 

reading, which are then used to alter how the sonar range 
data is incorporated into the global map. 
 

 
Fig. 1 Specular sonar reflection giving a noisy 
reading - when a sonar beam strikes a smooth 
surface at an angle far from 90o it does not return 
directly to the emitter. 

2. A Trio Of Environment Models 
     Three models of the environment are maintained:  

• A sonar map S. 
• A local map L. 
• A global map G.   

     The sonar map S is a stateless model which contains 
features extrapolated from the current set of sonar 
readings.  These features take the form of straight line 
segments.  The local map L maintains a set of features 
estimated from previous scans, but only within the area 
immediately surrounding the robot.  The global map G 
can take any form desired, but the results presented in 
this paper used a grid based metric map, similar to the 
occupancy grids proposed by Moravec and Elfes.   
 

3. The Feature Prediction Algorithm 
     There are seven steps involved in calculating a 
confidence measure for each sonar based on all past and 
current readings and using it to update a global map. 
 
1. Create a feature hypothesis for each sonar that 

claims to have detected an obstacle and place it in 
the sonar map S 
FOR EACH range reading < max range 

Create line segment feature si at centre of beam, at 
90o to direction of beam, and place in S 



2. Compare each feature in S, si, with all the other 
features in S, sj, to determine if they represent the 
same object in the environment. 
FOR EACH si in S 

FOR EACH sj in S NOT EQUAL TO si 
IF similar(si , sj) THEN 

Create new feature sk between si and sj and 
place it in S 

Remove si and sj from S 
3. Remove any feature in S caused by incorrect 

readings.  Confidence values derived from the 

sonar view are denominated by s
xc , where the s 

signifies that this confidence value was derived 
from the sonar view, and x indicates the formula 
used to calculate it. An L superscript signifies that 
the confidence value was derived from the local 
map L.  θ  is the difference in angle between the 
sonar and the feature, and ω is the beam 
aperture. 
FOR EACH son j in SONARS 
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FOR EACH si in S 
IF inconsistent(si , son j) THEN 

IF sonj should detect si THEN 
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ELSE IF sonj should not detect si 
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FOR EACH li in L 
IF inconsistent(li , son j) THEN 

IF sonj should detect li THEN 
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ELSE IF sonj should not detect li 
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FOR EACH si in S 
IF si detected by only 1 sonar AND  

( s
s
da Tc <  OR  s

L
da Tc < )  THEN 

Remove si from S 
4. Compare all remaining features in S with all lines 

in L, refining the hypothesis of the angle and 
position of the features in L 
FOR EACH si in S 

FOR EACH lj in L 
IF similar(si , lj) THEN 

Create new feature between si and lj and place 
it in L 

Remove si from S and remove lj from L 
FOR EACH si in S 

Place si in L as a new segment 
Remove si from S 

5. Features in L too far from the robot are removed 
FOR EACH li in L 

IF dist(robot_position, last_position_detected(li)) 
> Td THEN 

 Remove li from L 
6. Generate final sonar confidence values, L

dac . For 
any segment in L that should have been detected 
but was not, split in two and shorten it.  
Confidence values derived from the local model L 
are denoted with a superscript L, with the 
formula used to calculate the confidence value 
referred to with a subscript, as in L

xc . 

FOR EACH soni in SONARS 
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FOR EACH lj in L 
IF inconsistent(si , son j) THEN 

IF soni should sense lj if it exists THEN 
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Divide lj at point of intersection with son j, 
creating lk and ll   

Remove lj from L and insert lk and ll into L 
Reduce length of lk and ll 
IF length( lk ) < TL 

Remove lk from L 
IF length( ll ) < TL 

Remove ll from L 
IF soni should not sense lj if it exists THEN 
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7. Use sonar confidence values to alter how the 
sonar information is integrated into the global 
map.  The implementation of this step is specific 
to the method being used to generate the global 
map. 

 
4. Calculating Confidence Values 

A sonar beam is represented as three lines, as in Fig 4.  If 
none of the three lines intersect with a feature, then that 

sonar is given a confidence value 5.0=X
dac , where X is 

either s or L.  The value 0.5 is used due to the fact that 
when it is used in a Bayesian update formula, it has no 
effect.  If any of the three lines intersects with a feature 
either in S or L then the sonar is inconsistent with that 

feature.  At this point, either X
dc  or X

ac  must be 
calculated.  If the difference in orientation between the 



sonar and the feature is less than 25o (given a beam 
aperture ω of 25o), then the sonar should detect the 
feature if the feature were at the predicted position and 
orientation.  In this case, the closer to perpendicular the 
sonar is to the feature, the more likely it is to detect it.  

Therefore the confidence with regard to angle, X
ac , is 

calculated as: 
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This maps the confidence value into the range [0.25, 
0.5], meaning that a feature which should have been 
detected by the sonar can, at worst, halve the confidence 
in the sonar.  
 
If the difference in orientation between the sonar beam 
and the feature it is inconsistent with is more than 25o 
from perpendicular, then the sonar would not be 
expected to detect the feature, assuming that it is a 
smooth obstacle.  In this case the confidence in the sonar, 

X
dc is directly proportional to the distance from the sonar 

to the feature.   

 ( ) 22Rc X
d δ=  

When a range reading is inconsistent with a feature, only 
the are behind the feature is updated incorrectly as being 
freespace.  The closer the feature is to the sonar, the 
lower the confidence value must be to prevent the cells 
behind the feature being effected by the map building 
algorithm, as can be seen in Fig 2 and Fig 3. 

 
Fig. 2. Sonar beam with an 
undetected feature at 
distance δ1 from the 
emitter.  The darker the 
area, the more strongly it is 
believed to be unoccupied. 

Fig. 3. Sonar beam with 
undetected obstacle δ2 
from the emitter.  The 
strength of the freespace 
update has been reduced. 

 
5. Combining Confidence Values 

     Once s
dc  and s

ac  have been computed, they are 

combined to give a single confidence value for the sonar, 
s
dac .  The confidence combination formulae are derived 

from techniques for parallel combination of rules in 
expert systems [1], with the full derivation available in 
[2].
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As stated earlier, the initial confidence value of each 
sonar is 0.5. 

 
Fig. 4. The predicted features in the sonar model S after 
Step 1.  The robot is facing straight into a wall with 
sonars 2, 3, 4 and 5 returning a reading that is less than 
the maximum range.  Sonars 0, 1 and 6 return no 
reading, and sonar 5’s reading, while less than the 
maximum, is incorrect.  The min/max possible angles 
the line segments is in the [ ] brackets beside each line. 

 
Fig. 5. Predicted features after Step 2 is applied to the 
sonar view from Fig 4.  The three line segments S1 S2 
and S3 have been merged to create one segment as their 
min/max ranges overlap, and they are sufficiently close. 

 
Fig. 6. State of the sonar model S after Step 3 has been 
applied. Sonar 5 is inconsistent with the line created by 
sonars 2, 3 and 4, and its confidence is low enough so 
that the line predicted by it has been removed. 
 
 



6. Experimentation Results 

     A suite of benchmarking techniques published in [3] 
have been applied to 128 maps generated with and 
without feature prediction, both in simulation and in real 
world experiments on a Pioneer 1 robot from ActivMedia 
robots.  Each of the maps generated in the course of 
experimentation are compared against hand drawn ideal 
maps of the environment the robot traversed.  A 
complete description of all environments, benchmarks, 
and procedures followed can be obtained from [2]. 
The four tests are as follows: 
1. Correlation.  A technique from the image 

recognition field that tests the similarity of two maps 
using the average and standard deviation the cells, as 
well as comparing the maps on a cell-to-cell basis.  
A higher percentage indicates a greater degree of 
similarity between the maps.[4]   

2. Map Score.  A technique developed by Martin and 
Moravec [5] which calculates the difference between 
two maps by summing the squared difference of 
corresponding cells in each map.  The lower the 
percentage difference, the greater the similarity 
between the two maps. 

3. Map Score of Occupied Cells.  Similar to the 
previous benchmark, but only tests those cells that 
are occupied, i.e. >0.5 in one or both of the maps 
being tested.   

4. Path Comparison For False Positive Paths.  
Examines the freespace areas of a map by 
calculating the percentage of paths in the map which 
would cause a robot to collide with an obstacle.  The 
lower the percentage, the fewer paths would cause a 
collision, and therefore the better the map. 

 
 Correlation Map 

Score 
Map Score 
Occupied 

Cells  

Path Comparison 
False Positives 

Without 
Feature 
Prediction 

59.77% 13.80% 11.05% 59.60% 

With 
Feature 
Prediction 

71.56% 9.18% 7.80% 40.20% 

 
6.1 Analysis of Results 
 
     All four benchmarks show considerable improvement 
in map quality when Feature Prediction is applied.   

• The correlation benchmark shows the map 
quality increasing by 120%. 

• The Map Score benchmark shows the map 
quality increasing by 150%. 

• The Map Score of Occupied Cells shows an 
increase in map quality of 142%.   

• The Path Comparison for False Positive Paths 
benchmark shows an increase of 148%. 

  
7. Discussion 

     This paper presented a method of detecting specular 
sonar reflections and assigning confidence values to the 
sonar range readings in order to enable more accurate 
map building.  Experiments which employed the Feature 
Prediction algorithm with a simple two-dimensional 
gaussian sonar model from [6] showed an average 
increase of map quality of 140% over four different 
benchmarks.  Performing Feature Prediction requires a 
negligible amount of computational resources, with a 
standard desktop workstation capable of performing 
mapping for ten or more robots simultaneously.  
However it vastly increases the quality of a map, 
resulting in more effective navigation routines. 
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