
 

Title 

An Empirical Evaluation Of Map 

Building Methodologies in Mobile 

Robotics Using The Feature Prediction 

Sonar Noise Filter And Metric Grid Map 

Benchmarking Suite 

 

 

Author 

Shane O’Sullivan 

 

 

Master of Science 

 

University of Limerick 

 

 

Supervisor 

J.J. Collins 

 

 

Submitted to the University of Limerick November 2003 



 2 

Abstract 

 

Many successful autonomous robot control architectures demonstrate competency at 

tasks such as obstacle avoidance and wall following.  These architectures have been 

largely based on elements of Brooks’ subsumption paradigm which partly advocates 

minimal use of internal state to ensure tight integration of the sensory-motor control 

loop. However many of these are merely reactive systems.  In order to carry out more 

complex tasks, some forward planning is required.  This means that, unlike purely 

reactive systems, some inner state is needed to record facts about the environment and 

to determine what steps need to be taken in order to achieve the goal.   

 

In order to develop a strategy for completion of a goal, for example path planning, 

some internal representation of the surrounding environment, a map of some sort, is 

required.  The objective of this research is to compare and contrast various methods of 

map-building using sonars, including the traditional grid based probabilistic methods 

and gaussian models, as well as the more recent methods using refined specularity 

models, information-redundancy prevention and Bayesian update theory.  Platform 

independent modules have been developed to test and compare the approaches put 

forward by Elfes, Matthies, Moravec and Konolige.  Theoretical evaluations of the 

map-building approaches advocated by Thrun and Crowley are also undertaken 

within.  

 

One of the greatest difficulties of map building is in dealing with the noisiness of 

sonars, which often leads to inaccurate maps.  A method called Feature Prediction is 

presented that compensates for this noise using algorithms to predict features in the 

environment before the robot senses them. 

 

There is little agreement between researchers as to what exactly constitutes a good 

map, and there are therefore many benchmarking methodologies in the literature.  A 

number of these are discussed within, as well as two new tests that calculate the 

usefulness of the map when used by a robot to navigate. 

 



 3 

Acknowledgements 

 

First and foremost, thanks to my parents who, besides feeding me for so many years, 

bought me my first ZX81, and taught me to program BASIC on a Spectrum, planting 

the seed of frustration (that damn computer WILL do what I tell it!!) that has driven 

me to being a programmer. 

 

Secondly, I must thank JJ Collins my supervisor, who thoughtfully waited until a year 

into the research before telling me that he originally considered this whole thing to be 

impossible, as well as providing me with numerous ideas and some much needed 

direction. 

 

Thirdly, thanks to the other members of the robotics group in the University of 

Limerick, Mark Mansfield, Gerard Conway and Dave Haskett, for all the insightful 

conversations, and with whom I developed the distributed framework on which to run 

and test my software. 

 

Finally, thanks to Ciara for everything else. 

 



 4 

Table Of Contents 

Abstract.........................................................................................................................2 

Table Of Contents ........................................................................................................4 

Table of Figures..........................................................................................................11 

Chapter 1: Introduction ............................................................................................19 

1.1 Research Objective.............................................................................................19 

1.2 The Importance of Map Building and Localisation ...........................................21 

1.3 Problems Inherent in Map Building...................................................................23 

1.4 Interesting Properties of Intelligent Robots.......................................................25 

1.4.1 What is Artificial Intelligence? ...................................................................26 

1.5 Mobile Robotics .................................................................................................27 

1.6 Research Methodology.......................................................................................30 

1.7 Overview of Thesis .............................................................................................31 

1.8 Publications .......................................................................................................31 

Chapter 2: Map Building ..........................................................................................33 

2.1 Map Building – An Overview.............................................................................33 

2.2 Maps and Robot Architectures...........................................................................35 

2.2.1 Maps and the SPA architecture ...................................................................35 

2.2.2 Maps and the Subsumption Architecture ....................................................36 

2.2.3 Maps and the 3T Architecture.....................................................................36 

2.3 Map Types ..........................................................................................................36 

2.4 Previous Research in Map Building ..................................................................39 

2.5 Metric Area Based Maps....................................................................................41 

2.6 Topological Maps ..............................................................................................44 

2.7 Sensors Used in Robotics ...................................................................................45 



 5 

2.8 Map Building Approaches Evaluated Experimentally.......................................48 

2.8.1 Moravec and Elfes - High Resolution Maps From Wide Angle Sonar.......49 

2.8.2 Matthies & Elfes – Integration of Sonar and Stereo Range Data Using a 

Grid Based Representation...................................................................................57 

2.8.3 Konolige - Improved Occupancy Grids for Map Building .........................61 

2.9 Alternative Approaches To Map Building .........................................................76 

2.9.1 Alberto Elfes – Dynamic Control of Robot Perception Using Multi-

Property Inference Grids ......................................................................................77 

2.9.2 James Crowley – Navigation for an Intelligent Mobile Robot ...................80 

2.9.3 Sebastian Thrun - Learning Maps for Indoor Mobile Robot Navigation, 

Exploration and Model Building in Mobile Robot Domains, and Map Learning 

and High Speed Navigation in Rhino...................................................................84 

2.9.4 Biologically Inspired Models......................................................................89 

2.10 Constructing Topological Maps from Metric Maps ........................................89 

2.11 Constructing Topological Maps Using Potential Fields .................................91 

2.12 Blurring............................................................................................................92 

2.12.1 Box Blurring .............................................................................................93 

2.12.2 Optimising Box Blurring ..........................................................................93 

2.12.3 Gaussian Blurring .....................................................................................95 

Chapter 3: Feature Prediction for Filtering Noisy Sonar Readings......................98 

3.1 Feature Prediction – An Introduction................................................................98 

3.2 The Need for Feature Prediction .......................................................................99 

3.2.1 Previous Attempts at Specularity Estimation............................................101 

3.2.2 Example of the Feature Prediction in Operation.......................................103 

3.3 Algorithm for Generating Features and Calculating Sonar Confidence 

Measures ................................................................................................................105 

3.3.1 Step 1: Create a feature for every sonar that detected an obstacle and place 

it in the sonar model S ........................................................................................108 

3.3.2 Step 2: Compare each line segment Ss i ∈ , with all the other line segments 

in S, sj, to see if they could represent the same feature in the environment.......109 

3.3.3 Step 3: Remove any line segments in S caused by incorrect readings......111 



 6 

3.3.4 Step 4: Compare all remaining line segments in S with all lines in L, 

refining the hypothesis of the angle and position of the lines in L ....................120 

3.3.5 Step 5: Segments in L too far from the robot are removed .......................121 

3.3.6 Step 6: Generate final sonar confidence values, and split and shorten any 

segment in L that should be in S but is not.........................................................121 

3.3.7 Step 7 - Using Sonar Confidence Values To Build Maps.........................124 

3.4 Conclusion .......................................................................................................125 

Chapter 4: Software Architecture for Robotic Experimentation........................126 

4.1 Introduction......................................................................................................126 

4.2 The Saphira Architecture for Autonomous Mobile Robots ..............................127 

4.3 Software Systems Used in Experimentation.....................................................130 

4.3.1 Mapping algorithms represented as Service Providers to a Client ...........130 

4.3.2 Distributed Robotic Framework................................................................130 

4.3.3 Mapping Systems Summary .....................................................................132 

4.4 Architectural Modules......................................................................................133 

4.5 Grid3D Class ...................................................................................................135 

4.6 GridMap Class .................................................................................................137 

4.7 PoseBucket Class .............................................................................................138 

4.8 RobotServiceController Class..........................................................................140 

4.8.1 Interface To Saphira..................................................................................142 

4.9 ServiceControl Class........................................................................................143 

4.10 Mapping Class ...............................................................................................145 

4.11 ME85 map-building system............................................................................146 

4.11.1 Updating The Map ..................................................................................147 

4.12 ME85mod Map-Building System....................................................................149 

4.13.1 Problem 1 – The Cancel Step Used In Updating the Map Is Biased 

Towards Freespace Readings.............................................................................149 

4.13.2 Problem 2 – Specular Readings Often Cannot Be Detected Directly From 

Historical Data ...................................................................................................151 



 7 

4.14 ME88 Map-Building System ..........................................................................152 

4.15 ME88mod Map-Building System....................................................................153 

4.16 K97 Map-Building System .............................................................................155 

4.17 K97mod Map-Building System.......................................................................157 

4.17.1 Problem 1 – Probability of Specularity For A Single Sonar Reading is 

Independent From Cell To Cell .........................................................................157 

4.17.2 Problem 2 – The Probability of Specularity Only Diminishes The Strength 

Of The Freespace Update, Not The Occupied Update.......................................159 

4.18 SpecularEstimator Service For Feature Prediction ......................................160 

4.19 PlanPath Class...............................................................................................161 

Chapter 5: Benchmarking – What makes a good map?.......................................162 

5.1 Introduction......................................................................................................162 

5.2 Traditional Approaches to Evaluating Map Fitness........................................162 

5.2.1 Cross Correlation Between Maps..............................................................163 

5.2.2 Map Score .................................................................................................166 

5.2.3 Normalising The Map Score .....................................................................167 

5.2.4 Testing Only Occupied Cells With Map Score.........................................167 

5.3 Benchmarking A Map Based On Its Usefulness To A Robot ...........................169 

5.3.1 Introduction ...............................................................................................169 

5.3.2 Path Comparison - Testing a Map’s Usefulness to The Robot .................169 

5.3.3 Voronoi Graphs.........................................................................................171 

5.3.4 Generating Voronoi Graphs ......................................................................172 

5.3.5 The A-Star Path Planning Algorithm........................................................178 

Chapter 6: Experimentation Results......................................................................183 

6.1 Introduction......................................................................................................183 

6.2 Platform ...........................................................................................................183 

6.3 What Is To Be Proven? ....................................................................................184 

6.4 Experiment Plan...............................................................................................185 

6.4.1 Real World Experiments ...........................................................................185 



 8 

6.4.2 Simulated Experiments .............................................................................185 

6.4.3 Averaging Multiple Results For A Statistically Valid Sample .................186 

6.4.4 Naming Convention ..................................................................................186 

6.4.5 Simulated And Real World Environments Used In Experimentation ......187 

6.5 Data Capture....................................................................................................190 

6.5.1 Simulated Data Capture ............................................................................190 

6.5.2 Real World Data Capture ..........................................................................191 

6.6 Offline Processing Of Maps For Benchmarking..............................................191 

6.8 Ideal Maps........................................................................................................196 

6.9 Comparison Of Sonar Models And Mathematical Update Strategies, With 

Neither Pose Buckets Nor Feature Prediction.......................................................198 

6.9.1 Correlation with Ideal Map .......................................................................201 

6.9.2 Match All Cells Between Generated Maps and the Ideal Map.................204 

6.9.3 Match of Occupied Cells Between Generated Maps and the Ideal Map ..207 

6.9.4 Percentage of False Positive Paths in Generated Maps ............................209 

6.9.6 Evaluation of Results 1 .............................................................................214 

6.10 Comparison Of The Contribution of Pose Buckets and Feature Prediction To 

The Accuracy Of A Map.........................................................................................215 

6.10.1 Correlation with Ideal Map .....................................................................217 

6.10.2 Match All Cells Between Generated Maps and the Ideal Map...............219 

6.10.3 Match of Occupied Cells Between Generated Maps and the Ideal Map 221 

6.10.4 Percentage of False Positive Paths in Generated Maps ..........................223 

6.10.6 Evaluation of Results 2 ...........................................................................227 

Chapter 7: Conclusions ...........................................................................................228 

7.1 Theoretical Evaluation of Mapping with Mobile Robots using Sonar Sensors

................................................................................................................................228 

7.2 Feature Prediction – An Algorithm For Detecting Specular Sonar Readings 229 

7.3 Empirical Evaluation of Mapping Algorithms.................................................230 

7.3.1 Question 1 – Do Bayesian Update Formulas Improve A Map?................230 

7.3.2 Question 2 – Have Modifications On Original Theories Improves 

Performance?......................................................................................................231 



 9 

7.3.3 Question 3 – Is Konelige’s Sonar Model More Effective Than A Simple 2D 

Sonar Model .......................................................................................................232 

7.3.4 Question 4 – Does Feature Prediction Improve A Map’s Quality? ..........232 

7.3.5 Question 5 – Does Using Pose Buckets Improve A Map’s Quality?........232 

7.4 Future Research ...............................................................................................233 

7.5 Completion of Research Objectives .................................................................234 

7.5.1 Provides an empirical evaluation of a number of map building methods.234 

7.5.2 The Feature Prediction algorithm has been developed to enhance map 

building algorithms, specifically to identify noisy specular readings................234 

7.5.3 Development of a suite of benchmarking techniques for map building 

algorithms...........................................................................................................235 

7.5.4 Design and implementation of platform-independent robot control 

architecture, with support for threading, multiple clients and callbacks, and can 

be run on a single machine or distributed over a network. ................................235 

Bibliography .............................................................................................................236 

Appendices ................................................................................................................241 

A1 Design Diagrams of Robot Control Architecture.............................................241 

A2 Experimentation Results ...................................................................................247 

A2.1 AIC Simulated Environment Experimentation Results ............................247 

A2.2 Corridor Simulated Environment Experimentation Results......................249 

A2.3 CSIS Building 1
st
 Floor Simulated Environment Experimentation Results

............................................................................................................................251 

A2.4 Star Simulated Environment Experimentation Results.............................253 

A2.5 Star Real-World Environment Experimentation Results ..........................255 

A3 Sample Maps Generated In Simulated Experimentation..................................256 

A4 Introduction to Probability ...............................................................................262 

Conditional Probability ......................................................................................262 

Bayes Theorem...................................................................................................262 

The Expected Value of X...................................................................................263 

The Variance of X..............................................................................................263 

The Normal Distribution ....................................................................................264 



 10 

The Standard Normal Distribution.....................................................................264 

Percentiles of the Standard Normal Distribution ...............................................264 

Non-standard Normal Distributions...................................................................265 

Approximating Discrete Populations with the Normal Distribution..................265 

Joint Probability Distributions and Random Samples .......................................265 

Covariance..........................................................................................................266 

A5 Robot Simulators ..............................................................................................267 

A6 UL Robotics Group Software Architecture Manual .........................................271 

 

 



 11 

Table of Figures 

Fig 1.1 Traditional decomposition of a mobile robot control system into functional 

modules ................................................................................................................27 

Fig 1.2 Decomposing the robots activities into asynchronous behaviours with the 

subsumption architecture .....................................................................................28 

Fig 2.1 (a) A real-world environment with seven rooms.  Areas shaded black represent 

obstacles in the environment, white areas represent freespace. ...........................34 

Fig 2.1(b) A metric map of Fig 2.1 (a) with seven rooms connected by doors. Space is 

divided into equally sized squares with obstacles/walls shaded black and empty 

spaces blank. ........................................................................................................34 

Fig 2.1 (c) A topological map of the same area as Fig 2.1(a). .....................................34 

Fig 2.2 A feature based map based on same environment as Fig 2.1. .........................37 

Fig 2.3 Metric topological map....................................................................................38 

Fig 2.4 (a) Area based representation of an area..........................................................42 

Fig 2.4 (b) Same area as 2.4(a), divided into areas of equal value. .............................42 

Fig 2.4 (c) Quad tree representation of (a) and (b). .....................................................42 

Fig 2.5 Robot with sonars reflecting off obstacles.......................................................49 

Fig 2.6 Modelling the sonar beam................................................................................50 

Fig 2.7 A sonar beam probability distribution. ............................................................50 

Fig 2.8 Map Generated using Moravec and Elfes’ method in a simulated run around 

the CSIS building’s first floor. .............................................................................54 

Fig 2.9 Specular reflection ...........................................................................................55 

Fig 2.10 Multiple reflections from a single sonar pulse – all except the first are........56 

Fig 2.11 A Framework for Occupancy Grid-Based Sensor Integration.......................58 

Fig 2.12 Using a two dimensional gaussian sonar model to calculate P(R|OCC).......60 

Fig 2.13 On-axis log likelihood ratio in the single target model .................................66 

Fig 2.14 On axis log likelihood ratio for sonar range readings at 1, 2 and 3 metres 

using the multiple target model............................................................................67 

Fig 2.15 Pose buckets allow multiple specular readings of different lengths 

accumulate in highly specular areas, such as convex corners..............................75 

Fig 2.16 Recursive line fitting algorithm used in Crowley's work. .............................81 

Fig 2.17 Crowley’s framework for intelligent navigation. ..........................................82 



 12 

Fig 2.18 (a) Sensor Interpretation Network R. .............................................................87 

Fig 2.18 (b) Confidence Network C.............................................................................87 

Fig 2.19 Metric Graph with Voronoi Diagram ............................................................90 

Fig 2.20 Metric graph partitioned by Critical Points and Lines...................................90 

Fig 2.21 Graph generated of map area .........................................................................90 

Fig 2.22 Box Kernel. ....................................................................................................93 

Fig 2.23 Cross Section of a wall before and after box blurring is applied to the map.94 

Fig 2.24 Gaussian Kernel.............................................................................................95 

Fig 2.25 Cross Section of a wall before and after gaussian blurring ...........................96 

Fig 2.26 A map without any blurring, after box blurring with a kernel size of 9, and 

after gaussian blurring with a kernel size of 9. ....................................................97 

Fig 3.1 (a) Diffuse sonar reflection ............................................................................100 

Fig 3.1 (b) Specular sonar reflection giving a noisy reading .....................................100 

Fig 3.1 (c) Specular reflection giving a correct reading.............................................100 

Fig 3.2 (a) Robot facing into a corner often receives incorrect readings from sonars 

not sufficiently close to 90
o
 from the walls........................................................103 

Fig 3.2 (b) Robots sonar readings facing into the corner in 3.2a and the resulting 

predicted walls.. .................................................................................................103 

Fig 3.2 (c) Interpretation of sonar readings from Fig 3.2a without feature prediction

............................................................................................................................103 

Fig 3.2 (d) Interpretation of sonar readings from Fig 3.2a with feature prediction. ..103 

Fig 3.3 The predicted features in the sonar model S after Step 1.  ............................108 

Fig 3.4 Predicted features after Step 2 is applied to the sonar model from Fig 3.3.. .110 

Fig 3.5 The boundary box drawn around a line segment through which another line 

segment must pass to be judged to match it. ......................................................110 

Fig 3.6 State of the sonar model S from Fig 3.4 after Step 3 has been applied. ........112 

Fig 3.7 Modelling the sonar beams from Fig 3.2a using three line segments............112 

Fig 3.8 Calculating s

ac  when the sonar should sense an object but doesn’t...............114 

Fig 3.9 (a) Sonar beam with an undetected wall at distance δ1 from the emitter. .....115 

Fig 3.9 (b) Sonar beam with undetected obstacle δ2 from the emitter.. ....................115 

Fig 3.10 Calculating s

dc  with a range reading of 1000mm. .......................................116 

Fig 3.11 (a) The robot detects a wall to its right and models this with the feature lj. 122 

Fig 3.11 (b) Robot’s sonar reading is inconsistent with lj so lj is split into lk and ll ..122 



 13 

Fig 3.11 (c) Robot’s sonar reading is inconsistent with feature ll, so it is split into two.

............................................................................................................................123 

Fig 3.11 (d) The wall is reacquired, so a new feature lm is created, and merged with lk 

and ll. ..................................................................................................................123 

Fig 4.1 Saphira server architecture.............................................................................128 

Fig 4.2 – Overall Saphira architecture for robotic control. ........................................129 

Fig 4.3 Complete Robotic Control architecture.. .......................................................131 

Fig 4.4 Outline of the features of each of the six map building systems developed for 

this thesis............................................................................................................133 

Fig 4.5 Grid3D package containing the gridmap class, mapblock class, and external 

object WorldFileLexer. ......................................................................................136 

Fig 4.6 Grid3D Class. ................................................................................................137 

Fig 4.7 GridMap class, which inherits from Grid3D. ................................................137 

Fig 4.8 PoseBucket class............................................................................................138 

Fig 4.9 Dividing the area surrounding each cell in a Pose Bucket by degrees and 

distance from the cell. ........................................................................................139 

Fig 4.10 RobotServiceController class interacting with Saphira and the Mapping and 

Localisation classes. ...........................................................................................141 

Fig 4.11 RobotServiceController class ......................................................................142 

Fig 4.12 ServiceControl Class. ..................................................................................144 

Fig 4.13 Mapping class, parent of all the map-building system classes. ...................145 

Fig 4.14 The ME85 class integrating with the GridMap, Grid3D, Mapping and 

GridBlock classes...............................................................................................146 

Fig 4.15 ME85 class...................................................................................................147 

Fig 4.16 Bounding box around a sonar arc, representing a fragment of the real map.

............................................................................................................................147 

Fig 4.17 Occupied and unoccupied areas of a sonar arc. ...........................................148 

Fig 4.18 The ME85mod class ....................................................................................150 

Fig 4.19 ME88 class, interacting with Grid3D, GridMap, Mapping and GridBlock 

classes.................................................................................................................152 

Fig 4.20ME88 class definition.. .................................................................................153 

Fig 4.21 ME88mod mapping service using the SpecularEstimator service, as well as 

PoseBucket and GridMap objects ......................................................................154 

Fig 4.22 ME88mod class definition.. .........................................................................154 



 14 

Fig 4.23 K97 mapping service class definition..........................................................155 

Fig 4.24 The K97 map building service.....................................................................155 

Fig 4.25 The K97mod map building service..............................................................156 

Fig 4.26 K97mod mapping service class.  .................................................................157 

Fig 4.27 (a) Front sonar of a robot which is slightly inconsistent with the previously 

modelled map. ....................................................................................................158 

Fig 4.27 (b) Diagonal sonar of a robot which is very inconsistent with the previously 

modelled map. ....................................................................................................158 

Fig 4.28 A typical corridor scene with ‘sonar shadows’ resulting from noisy specular 

readings ..............................................................................................................159 

Fig 4.29 SpecularEstimator class. ..............................................................................160 

Fig 4.30 The PlanPath Class implements a modified version of the A-Star path 

planning algorithm.. ...........................................................................................161 

Fig 5.1 (a) The ideal map of an environment.............................................................163 

Fig 5.1 (b) An inaccurate map generated by running a robot around the environment 

from Fig 5.1(a). ..................................................................................................163 

Fig 5.1 (c) A more accurate model of the environment from Fig 5.1 (a) than Fig 5.1 

(b). ......................................................................................................................163 

Fig 5.2 (a) Correlation can give a high percentage match to two maps even if they are 

quite different.. ...................................................................................................165 

Fig 5.2 (b) This corridor, curved due to odometry error, would have very high 

correlation with Fig 5.2a. ...................................................................................165 

Fig 5.3 A typical corridor scene with ‘sonar shadows’ resulting from noisy specular 

readings. .............................................................................................................168 

Fig 5.4 Star ideal map with inscribed Voronoi graph of all possible paths in the 

environment........................................................................................................171 

Fig 5.4 A Voronoi graph of an open area with multiple small obstacles represented 

black square dots.. ..............................................................................................171 

Fig 5.5 Two obstacles (black dots) and the points which are equidistant from them B.

............................................................................................................................172 

Fig 5.6 Line B between o1 and o2 is truncated at the centre of the circle inscribing o1, 

o2 and o3.. ...........................................................................................................173 

Fig 5.7 To find the centre (cx, cy)  of a circle inscribing three points, bisect any two 

chords between the points, and get their intersection. .......................................174 



 15 

Fig 5.8 (a) The obstacle o3 is on the positive side of the line L .................................175 

Fig 5.8 (b) The obstacle o3 is on the negative side of the line L. ...............................175 

Fig 5.8 (c) The obstacles o3 and o4 are on the negative and positive sides of L. .......175 

Fig 5.8 (d) The complete line B is discarded since T
+
 is to the negative side of T

 -
...175 

Fig 5.9 (a) All freespace cells record the closest occupied cell above, below, left and 

right of it.............................................................................................................177 

Fig 5.9 (b) Only the occupied cells referenced by the freespace cells B passes through 

are tested for their truncation points T. ..............................................................177 

Fig 5.10 A-Star algorithm for generating a path in a metric grid-based map. ..... Error! 

Bookmark not defined. 

Fig 5.11 The basic A-Star algorithm often becomes trapped in local minima. .........180 

Fig 5.12 The A-Star algorithm after line fitting has been applied to the map. ..........180 

Fig 5.13 The A-Star algorithm with line fitting, as well as taking into account the 

length of the path and the linear distance to the goal.........................................181 

Fig 6.1 Environments used in experimentation..........................................................190 

Fig 6.2 Enumeration of the maps generated from each test run performed...............190 

Fig 6.3 (a) The MapViewer application in Map Mode. .............................................192 

Fig 6.3 (b) The MapViewer application in Path Mode, with four paths displayed. ..193 

Fig 6.3 (c) The MapViewer application in RobotRun Mode.  The path the robot took is 

displayed inside the eSTAR environment. ..........................................................193 

Fig 6.4 (a) Star Ideal Map with a Voronoi graph.......................................................196 

Fig 6.4 (b) AIC Ideal Map with a Voronoi graph. .....................................................197 

Fig 6.4 (c) CSIS Building 1
st
 Floor Ideal Map with a Voronoi graph. ......................197 

Fig 6.4 (d) Corridor Ideal Map with a Voronoi graph. ..............................................198 

Fig 6.5 Map of the CSIS building produced by the K97mod map building system 

using both feature prediction and pose buckets .................................................199 

Fig 6.6 The Pioneer robot in the Star world test environment. ..................................200 

Fig 6.7 Correlation between the generated maps and the ideal maps.. ......................201 

Fig 6.8 (a) The map of the eSTARsim environment produced by K97 when no pose 

buckets are used. ................................................................................................202 

Fig 6.8 (b) The map of the eSTARsim environment by ME85mod when no pose 

buckets or feature prediction is used..................................................................202 

Fig 6.9 (a) The map produced by K97 without pose buckets of the eCORRsim 

environment........................................................................................................203 



 16 

Fig 6.9 (b) The map produced by ME85mod of the eCORRsim environment without 

pose buckets or feature prediction......................................................................203 

Fig 6.10 Comparison of the Correlation results for the simulated Star environment 

and the real-world Star environment..................................................................203 

Fig 6.11 The Match All Cells benchmark measures the cell-by-cell squared difference 

between two maps. .............................................................................................204 

Fig 6.12 Comparison of simulated and real-world results for the percentage of the 

cell-by-cell difference from the ideal map of the Star environment. .................205 

Fig 6.13 Match between the occupied cells in the generated maps and the ideal maps.

............................................................................................................................207 

Fig 6.14 Comparison between simulated and real-world results for the cell-by-cell 

difference between the generated map and the ideal map, only taking into 

account the occupied cells in both maps. ...........................................................208 

Fig 6.15 The percentage of false positive paths in the generated maps.. ...................209 

Fig 6.16 Fig 6.16 Comparison of simulated and real-world experimentation results of  

         the percentage of all paths in the generated map that would cause a collision in 

         the real world………….………………………………………………………210 

Fig 6.17 Percentage of false negative paths in the generated map.............................212 

Fig 6.18 Map of the eSTARsim environment generated by the K97 mapping system 

when pose bucket are not used...........................................................................212 

Fig 6.19 Comparison of the simulated and real world results of the percentage of 

paths from the real world that could not be completed in the generated map. ..213 

Fig 6.20 Average Correlation of all maps generated by ME85mod, ME88mod and 

K97mod, grouped by their use of feature prediction and pose buckets. ............217 

Fig 6.21 Comparison of the simulated and real-world results of the correlation 

between the generated map and the ideal map of the eSTAR environment. ......218 

Fig 6.22 Average Match of all cells in all maps generated by ME85mod, ME88mod 

and K97mod, grouped by their use of feature prediction and pose buckets.......219 

Fig 6.23 Comparison of simulated and real-world results for the percentage cell-by-

cell difference between the generated map and the ideal map of the eSTAR 

environment........................................................................................................220 

Fig 6.24 Average Match of occupied cells in all maps generated by ME85mod, 

ME88mod and K97mod, grouped by their use of feature prediction and pose 

buckets................................................................................................................221 



 17 

Fig 6.25 Comparison of simulated and real-world results of the percentage cell-by-cell 

difference between the occupied cells in the generated Star map, and the ideal 

map of the Star environment..............................................................................222 

Fig 6.26 Percentage of false positive paths in the generated map.. ...........................223 

Fig 6.27 (a) Voronoi graph in map of eCORRsim generated by ME85mod without 

feature prediction or pose buckets......................................................................223 

Fig 6.27 (b) Voronoi graph in map of eCORRsim generated by ME85mod using both 

feature prediction and pose buckets. ..................................................................223 

Fig 6.28 Comparison of the simulated and real-world results of the percentage of 

paths created in the generated map that would cause a collision in the real-world.

............................................................................................................................224 

Fig 6.29 Percentage of false negative paths in all maps generated by ME85mod, 

ME88mod or K97mod, grouped by their use of feature prediction and pose 

buckets................................................................................................................225 

Fig 6.30 Comparison of the simulated and real-world results of the percentage of 

paths in the real world that could not be completed in the generated map. .......227 

Fig A1 Overall view of the robot control architecture currently under development in 

the University of Limerick robotics group.........................................................241 

Fig A2 Architecture of modules used in experimentation.. .......................................242 

Fig A3 Interaction between RobotServiceController, ServiceControl and Mapping 

classes.................................................................................................................243 

Fig A4 Map Storage Classes GridBlock, Grid3D and GridMap. ..............................244 

Fig A5 PoseBucket class used to ignore redundant sonar readings.. .........................245 

Fig A6 The SpecularEstimator class which performs feature prediction to filter noisy 

sonar readings.....................................................................................................246 

Fig A7 Map generated of the eCSBsim environment by the ME85 map building 

system, which uses neither pose bucket nor feature prediction. ........................256 

Fig A8 Map generated of the eCSBsim environment by the ME88 map building 

system, which uses neither pose bucket nor feature prediction. ........................257 

Fig A9 Map generated of the eCSBsim environment by the ME85mod map building 

system,  with feature prediction and pose buckets disabled...............................257 

Fig A10 Map generated of the eCSBsim environment by the ME88mod map building 

system,  with feature prediction and pose buckets disabled...............................258 



 18 

Fig A11 Map generated of the eCSBsim environment by the K97 map building 

system, with pose buckets disabled. K97 does not use feature prediction. ........258 

Fig A12 Map generated of the eCSBsim environment by the K97mod map building 

system,  with feature prediction and pose buckets disabled...............................259 

Fig A13 Map generated of the eCSBsim environment by the ME85mod map building 

system,  with feature prediction and pose buckets disabled...............................260 

Fig A14 Map generated of the eCSBsim environment by the ME85mod map building 

system, with feature prediction disabled and pose buckets enabled. .................260 

Fig A15 Map generated of the eCSBsim environment by the ME85mod map building 

system,  with feature prediction enabled and pose buckets disabled. ................261 

 



 19 

Chapter 1: Introduction 

1.1 Research Objective 

The purpose of this thesis is to implement, compare, and contrast the various 

paradigms currently in use for mapping an environment with a mobile robot.  The 

methods tested include: 

• Probabilistic Occupancy Grid theory put forward by Moravec and Elfes [46]. 

• Bayesian based Occupancy Grid methods by Matthies and Elfes [42]. 

• Konolige’s MURIEL [33] method for eliminating incorrect sonar readings. 

 

Theoretical evaluations are also carried out on work by other researchers.  These 

include: 

• Crowley’s hybrid method [15] of extracting features from a local grid map. 

• Elfes’ Inference Grids [20]. 

• Thrun’s automatic learning of sensor models [57, 58] and confidence values 

using neural nets. 

The thesis also presents an algorithm called Feature Prediction for filtering noisy 

sonar readings in order to build more accurate maps.  

 

The methods being evaluated enable a robot to model its environment using a number 

of paradigms, for example a 2D grid [15,33,42,47], or a topological graph [57,58].  

This thesis examines the strengths and weaknesses of the available methods, as well 

as suggesting improvements. It determines which method, or what combination of 

multiple methods, best enables a robot to accurately model its surrounding 

environment through the construction of a map.   

 

Many different types of sensors are available to researchers in mobile robotics, and 

these are discussed later.  This thesis is concerned with map building using sonar 

ultrasonic sensors for many reasons, as discussed in chapter 2.  However a very 

extensible architecture is presented that facilitates the incorporation of additional 

sensory inputs. 

 



 20 

While mobile robots are used here as a test bed for the various map-building 

strategies, they are just one of a number of possible platforms.  This thesis is therefore 

not a review of possible robot architectures and their pros and cons, rather one robot 

architecture is designed and discussed, and one simulator is used, the Pioneer 1 robot 

and Saphira simulator by ActivMedia Robotics.  All algorithms performing map 

building are evaluated using this architecture and simulator. 

 

The process of evaluation involved building a number of modules for the purpose of 

map building.  These modules are architecture independent and work with any robot 

configuration.  To ensure real-time operation with limited resources, as well as to 

promote extensibility, these modules were deployed in a distributed framework using 

CORBA (see Appendix A) although they are also capable of being deployed on a 

single machine.  This framework has, and will continue to be, added to by other 

researchers in the robotics group to include path-planning capabilities, neural net 

based mapping techniques, as well as pursuit and evasion algorithms to create a 

highly functional mobile robot. 

 

The contribution of this thesis is as follows.  

1. It provides an empirical evaluation of a number of map building methods. 

2. The Feature Prediction algorithm has been developed to enhance map building 

algorithms, specifically to identify noisy specular readings. 

3. Development of a suite of benchmarking techniques for map building 

algorithms. 

4. Design and implementation of platform-independent robot control 

architecture, with support for threading, multiple clients and callbacks, and can 

be run on a single machine or distributed over a network. 

 



 21 

1.2 The Importance of Map Building and Localisation 

Map building is important for a number of reasons.  Primarily, an accurate model of a 

robot's surrounding environment enables it to complete many complex tasks more 

quickly and reliably than without such a model.  While a variety of robotic activities 

are possible to perform with minimal inner state [5], for example wall following or 

collecting soda cans [7], many other activities require considerable forward planning 

for them to be completed within and acceptable timeframe.  Examples of such 

activities include path planning, searching for objects [59] or places, or vacuum 

cleaning a floor.  Without an internal map of the environment, a robot cannot plan a 

path to a place not currently sensed by its sensors.  Neither could it effectively search 

for an object or place since it may search the same place repeatedly and never know 

that it was retracing its steps. 

 

Another advantage of map building is that it potentially provides a good framework 

for integrating information from many different sensors, possibly of heterogeneous 

types, from many different positions and directions, into a single knowledge source, 

from which intricate plans can be created [42, 59].  This is beneficial as it 

compensates for many weaknesses inherent in the various sensors used in map 

building.  For example, if both vision and sonars were used in conjunction, the vision 

system may not detect a white wall, whereas a sonar is more likely to detect it, or the 

sonars might miss a hole in the ground, but the vision system will possibly detect it.  

If the information from both sets of sensors is integrated into the same map, then they 

can be used to either confirm or dispute each other, resulting in a more robust, less 

error-prone model of the environment.  This in turn leads to more successful plans 

being created that require fewer changes to be made to them during their execution. 

 

One of the more prominent difficulties is mapping an environment is in knowing the 

exact position and orientation the robot was in when it received the sensor readings.  

If the wrong position is used, then the incorrect part of the map will be updated, 

leading to large errors.  Information regarding the distance the robot has travelled, and 

in what direction, is usually calculated from measuring the number of times each 

wheel has turned, also called odometry.  Unfortunately, occurrences such as wheel 

slippage and angular drift (when the robot’s odometry claims it is going in a certain 



 22 

direction, but it is slightly wrong) can lead to the estimation of the robot’s position 

being extremely erroneous.  It is therefore necessary to use the robot’s other sensors to 

correct this error in pose (position and orientation) estimation.  This is called 

localisation. 

 

Localisation is used in an attempt to solve two related problems: 

• Global localisation, the ability of the robot to decide where it is in relation to 

the rest of the environment.  Global localisation is necessary when the robot 

has a previously generated map of its environment.  When it is first turned on 

it must be able to know where it is within that map in order to incorporate its 

new sensor readings into the correct area of that map.   

• Position tracking, when the robot decides where it is in relation to where it 

was.  Position tracking is used to compensate for the problems mentioned 

earlier of wheel slippage and angular drift caused by things such as differences 

in wheel pressure and slippery surfaces. 

 

When performing map building with mobile robots, a method called Simultaneous 

Localisation and Map-Building (SLAM) is usually performed.  Using this method, a 

map is build as the robot traverses an environment, while a localisation routine runs in 

parallel, continually updating and correcting the robot’s estimated pose. 

 

The issue of localisation, despite its necessity, is beyond the scope of this research.  A 

flexible framework, detailed in Chapter 4, has been developed which allows the easy 

addition of services to the overall robotic architecture, and it is intended that other 

researchers in the UL robotics group will add localisation modules to complement the 

mapping modules developed for this thesis, just as they have added pursuit and 

evasion and path planning modules.   

 



 23 

1.3 Problems Inherent in Map Building 

There are two primary difficulties when it comes to building maps of an environment. 

1. How to translate sensor readings into knowledge about the environment.  This 

includes modelling the data returned by a sonar as an object in the world, as 

well as compensating for the considerable amount of noise in sensor readings.  

A large portion of this thesis is dedicated to these topics, with Chapter 2 

discussing various approaches taken by researchers in the past [15, 20, 33, 42, 

47, 57, 58, 59], and Chapter 3 presenting a new method called Feature 

Prediction for estimating the reliability of sonar readings. 

2. Dimensionality of an environment.  The more information that is stored about 

an environment the more use can be made of it, but also the more memory and 

computation time is required.  This thesis focuses on two-dimensional maps, 

which is a tractable problem using today’s desktop workstations.  However 

there is work currently underway [47] into full three-dimensional maps that 

store huge amounts of data.   

3. Estimation of the robot’s position.  As explained in the previous section, errors 

in measurements taken of the number of times wheels have turned lead to error 

in the robot’s estimation of its pose accumulating over time to eventually 

rendering a map useless.  Localisation routines can be used to correct these 

errors.  However, these are not examined in this thesis. 

4. Dynamic environments.  Environments can change over time, doors open, 

chairs move, people move.  The map that a robot built initially may, after a 

period of time, no longer be valid.  This is an open problem in the domain of 

robotic map building, and one that has yet to be solved. 

 

 

This thesis examines various solutions to the first map building issue listed above, that 

of how to interpret the sonar readings received by the robot.  The issue of localisation 

is beyond the bounds of this work.  However, it must be stressed that localisation is 

essential to the area of map building, which is illustrated in Chapter 6, 

Experimentation, where the quality of the map produced in simulation (without 

odometry error) being far superior to the map produced when a real robot is used to 

map an area without localisation routines. 



 24 

This thesis therefore deals with three main issues: 

1. Compare and contrast different map building strategies, some theoretically 

[15, 59], and others both theoretically and experimentally [33,42,46]. 

2. Developing a method for recognising the type of reflection being exhibited by 

the sonar beam and assigning confidence measures to each sonar readings 

using an algorithm called Feature Prediction. 

3. Designing and implementing a comprehensive suite of benchmarking methods 

for evaluating the fitness of a map generated by a given map building method. 

 

 



 25 

1.4 Interesting Properties of Intelligent Robots 

Early attempts at imbuing a machine with intelligence met with what was then 

considered to be some amount of success – computers could play draughts [26, 55], 

play chess [48], and manoeuvre in very simple static domains such as the blocks 

world, for example the robot Shakey developed at SRI [49].  At the time, the 

possibilities seemed endless. As Herb Simon, a noted AI researcher said in 1957: 

“… There are now in the world machines that think, that learn and that 

create. Moreover their ability to do these things is going to increase rapidly 

until – in the visible future – the range of problems that they can handle will 

be coextensive with the range to which human mind has been applied.” 

 

However the AI community soon hit a brick wall, and could go no further.  The 

reason for this, argues Brooks [6], is that by simplifying the world in which the 

machine operated, researchers were ignoring the very problem that they should be 

attempting to solve.  Both checkers and chess are finite problems within a clearly 

defined world and the blocks world presented simplistic shapes that a robot could 

recognise, such as cubes and rectangles.  Brooks argued that to infer true intelligence 

upon a machine, we have to imitate the process of evolution of humans.  By this he 

meant that instead of taking away all the difficult properties of the world in order to 

allow a robot to navigate, as was done in the blocks world approach, we should first 

tackle problems such as obstacle avoidance, wall following and other so-called 

simplistic actions.   

 

Brooks argues that it is better to try to achieve insect-level intelligence, a realistic 

goal, than to attempt to imitate humans and failing.  This means that before the robot 

is able to model the world, it should first be able to exist in it safely, and to carry out 

simple tasks.  The reason the early robots failed was that they tried to reason 

everything about their surroundings, and while they were busy doing that, they 

crashed into something.  This mode of operation is called the Sense-Plan-Act cycle 

(SPA), and is expanded upon in section 1.5.  Brooks advocated less of a dependence 

on inner state, with almost no time spent between sensing and action meaning that 

robots can now avoid obstacles, follow walls, and even collect soda cans [7] in a 

dynamic environment.  He coined the now famous phrase “the world is its own 



 26 

model” to explain that rather than try to understand the world, we should be using it, 

and that the only way to create true intelligence in a machine, is to create a machine 

that can operate in a real world environment.  He also argues that the field of robotics 

is an ideal test bed for such development since all other applications of artificial 

intelligence, whether game playing, medical diagnosis or whatever, have had the 

complexity of the world removed a priori by a human. 

 

The goal of early AI researchers of making a machine that ‘thinks’ and ‘understands’ 

like a human has all but been abandoned due to its apparent impossibility.  Instead, 

largely as a result of the work carried out by Brooks and the MIT Artificial 

Intelligence lab, the focus has shifted to creating machines that can carry out tasks that 

humans may find mundane, such as vacuuming a floor, or tasks that are too dangerous 

for humans, such as deep sea exploration or scouting other planets.  These are being 

done through the field of robotics, and with more success than ever before. 

 

1.4.1 What is Artificial Intelligence? 

Possibly the simplest, and least controversial, definition of Artificial Intelligence (AI) 

is the study of how to build and/or program computers in order that they can do the 

kind of things that minds can do.  One problem with this definition is that it assumes 

that computers can do what minds do, i.e. diagnose, advise, and understand.  This 

problem can be avoided by saying that AI is the development of computers whose 

observable performance has features, which, in humans, we would attribute to mental 

processes [3]. 

 

Many systems have been developed that are in line with the above definition, such as 

systems for medical diagnosis [29], navigation and image recognition.  However the 

holy grail of AI research is not merely to create systems that can carry out complex 

functions, but to create systems that comprehend what it is that they do [3].  As the 

method of teaching often used with children states: learn first, understand later.  This 

means that in order to understand our environment we must first know it, and it is this 

learning step that this thesis is concerned with.  Building a map of the environment a 

robot must operate in is a method of organising and validating the information the 

robot can extrapolate using both its sensors and past information.  The problem of 



 27 

comprehending the stored information is beyond the scope of this work, and is, for the 

foreseeable future beyond the abilities of the scientific community as a whole.  

 

1.5 Mobile Robotics 

As mentioned earlier, this thesis is not concerned with the particulars of the various 

robot architectures available.  The mapping techniques discussed herein can be 

applied to a number of different platforms, for example hand held devices used in 

underground cave mapping or indoor building modelling.  However, it is useful to 

have an understanding of the platform used in experimentation in order to 

comprehend the experiments performed and the results obtained.  As such, here 

follows a brief introduction to the field of robotics.  

 

In mobile robot navigation, four different approaches have been proposed. 

(i) Traditional approach – Sense Plan Act (SPA) cycle 

(ii) Subsumption / Reactive architecture 

(iii) Hybrid architecture 

(iv) Deliberative approach 

In the traditional approach, perception, planning and execution follow each other in 

that exact order (see Fig 1.1).  This theoretically enables robots to deal with complex 

problems, but it is inflexible and its top down behaviour makes it almost impossible to 

implement in real life.   

Sensors 

P
er

ce
p
ti
o
n
 

M
o
d
el

li
n
g
 

P
la

n
n
in

g
 

T
as

k
 E

x
e
cu

ti
o
n
 

M
o
to

r 
C
o
n
tr
o
l 

Actuators 

 

Fig 1.1 Traditional decomposition of a mobile robot control 

system into functional modules 

 

Brooks [10] criticised the traditional approach, saying that there were too many steps, 

and hence delays, between sensing and action. Brooks also felt that the symbol system 

used in the traditional approach to represent the world was a bottleneck.  Since all 



 28 

information must flow through the symbol-based system, processes couldn’t run in 

parallel, which leads to slow deliberative behaviour, which is not well suited to 

dynamic environments.  The SPA approach also suffers from the fact that trying to 

extract artefacts from sensory channels is a complex problem.  When just incomplete 

information is available, as often happens, the choice has to be made whether or not to 

make assumptions as to the properties of an artefact, which can lead to errors in the 

planning stage. 

 

Traditional symbol systems are also under constrained [28], which means that they 

can, and do, represent anything that is logically possible, including a huge number of 

highly unlikely concepts.  Thus, time is wasted reasoning about events that can never 

occur, a situation referred to as the frame problem.  As Fodor put it [22], The "frame 

problem", he writes, is: "Hamlet's problem: when to stop thinking" 

 

To solve these problems, Brooks created his Subsumption Architecture (see Fig 1.2), 

which was a behaviour-based, layered architecture with a bottom up approach.  Each 

layer in this architecture represented a behaviour, with all layers running in parallel, 

with very little interaction between them.  This worked well with low-level 

behaviours, such as obstacle avoidance and wall following, but did not allow for 

higher-level functions such as learning or planning.   

 

 

Fig 1.2 Decomposing the robots activities into asynchronous behaviours with the 

subsumption architecture 

 



 29 

Because of this lack of higher functions, a third approach was proposed, a hybrid 

architecture.  This involves using a behaviour based, reactive system for low-level 

control, and a central planning device like the traditional approach for higher-level 

behaviours like planning and mapping.  An interesting development of this method is 

the use of a deliberative layer to perform higher-level functions like mapping and 

navigation.  This layer can be implemented through neural networks and/or genetic 

algorithms, among others. 

 

The mobile robot RHINO [59] designed by Thrun and his team of researchers used an 

architecture similar to the 3T architecture.  Their distributed modular architecture ran 

simultaneously on multiple computers, both on-board and off-board.  Each computer 

ran one or more higher level modules, with low level behaviours residing on the robot 

itself.  The higher level modules, whether their function be map building, localisation, 

path planning or something else, executed as an ‘any-time’ algorithm.  This means 

that the module was not constrained by real time considerations, and that whenever it 

completed processing the information given it, it would report its results to the 

appropriate controller module.  This design strongly influenced the robot control 

framework designed for this thesis as laid out in Chapter 4. 

 

The distributed robot control framework developed for this thesis and extended by the 

robotics group in UL is designed is such a way as to evoke emergent behaviour from a 

robot.  Emergent behaviour is when a system made up many individual parts, each of 

which is self-contained and capable of performing its function regardless of the 

presence of any other modules, displays what seems to be intelligent behaviour 

because of the interaction between the modules.  It uses the three-layer architecture or 

3T [24], which is quickly becoming the de facto standard for mobile robotics.  The 3T 

architecture is a further development of the subsumption architecture and consists of a 

skill layer, a sequencing layer and a planning layer, which are the bottom, middle and 

top layers respectively.  The skill layer tightly couples the sensors to the actuators, 

with the bare minimum of internal state.  It implements primitive behaviours, such as 

wall following and obstacle avoidance and is identical to the reactive type of system 

Brooks advocated [5]. The sequencing layer decides which behaviour should be active 

at any given time, arranging a number of different behaviours in order to carry out 



 30 

useful tasks.  The sequencing layer contains some internal state, but it must operate in 

real time.  As Gat [24] states: 

“The sequence should not perform computations that take a long time relative 

to the rate of environmental change at the level of abstraction presented buy 

the controller.”  

What the rate of environmental change is exactly is open to discussion, but is 

generally accepted that the process should complete within one clock cycle of the 

robot.  The planning layer is where most of the time consuming operations take place, 

and it usually doesn’t work in real time.  This layer is where all the path planning, 

localisation and map building take place. 

 

The Saphira architecture designed by Kurt Konolige [32] was chosen for 

experimentation, and was used for obstacle avoidance and basic movement, although 

the robotic mapping services are designed to work hand in hand with any other 

architecture.  Saphira acts as both the bottom and middle layers of the 3T architecture.  

Saphira uses a version of the Procedural Reasoning System (PRS) behaviour 

sequencing language, Colbert, to string together basic actions, for example wandering 

or following an object.  The map building, path planning and pursuit-and-evasion 

services sit on the top of the basic motion layer as the planning, or deliberative, layers.  

All of these services act asynchronously to the others to achieve their own goal, and it 

is possible to remove any of the upper layers without affecting the lower layers.  They 

do not work in real-time, and may lag behind the operation of the robot, but this is to 

be expected with the deliberative layer. 

 

1.6 Research Methodology 

The methodologies used in the completion of this thesis included: 

• Literature review – A complete review of the previous research in the area of 

map building and localisation in mobile robots.  The result of this work can be 

seen in chapter two where the work done by previous researchers such as 

Moravec, Elfes, Konolige, Thrun and others is explained and analysed in 

depth. 

• Design and implementation of robotic control architecture. 



 31 

• Simulation – Both development and experimentation made much use of the 

Saphira simulation environment to speed up implementation of the test suites. 

• Embodied Experimentation – Experimentation took place on a Pioneer 1 robot 

in a variety of environments including hallways and a small enclosed 

environment. 

• Development of comprehensive suite of benchmarking techniques for 

determining the quality of a map. 

 

1.7 Overview of Thesis 

Chapter two contains an overview of map building, as well as a theoretical analysis of 

work by Alberto Elfes, Larry Matthies, Hans Moravec, Sebastian Thrun, Kurt 

Konolige and James Crowley. 

 

Chapter three details the Feature Prediction algorithm designed as part of this body of 

research to filter out incorrect sonar readings. 

 

Chapter four outlines the Saphira architecture the experimental modules operated on, 

as well as describing the various map building services used in experimentation.  It 

also outlines the overall distributed framework these modules are part of. 

 

Chapter five details the suite of benchmarking techniques applied to the maps in order 

to test their fitness, based on a number of different criteria. 

 

Chapter six describes the experiments carried out and the results obtained. 

 

Chapter seven presents the conclusions that can be drawn from the theoretical analysis 

and experimentation results, both simulated and real world. 

 

1.8 Publications 

Four papers based on research presented in this thesis have been accepted for 

publication at the Ninth International Symposium on Artificial Life and Robotics 

(AROB) 2004 in Oita, Japan.  The titles are as follows. 



 32 

1. Linear Feature Prediction for Confidence Estimation of Sonar Readings in 

Map Building – O’Sullivan, S, Collins, J. J., Mansfield, M, Eaton, M, Haskett, 

D.  This paper is based upon research discussed in chapter three. 

2. Developing an extensible  benchmarking framework for map building 

paradigms.– Collins, J.J., O’Sullivan, S, Mansfield, M, Eaton, M, Haskett, D.  

This paper is based on research presented in chapter five. 

3. A Quantitive evaluation of sonar models and mathematical update methods for 

Map Building with mobile robots – O’Sullivan, S, Collins, J.J., Mansfield, M, 

Eaton, M, Haskett, D.  This paper is based upon the empirical experimentation 

results presented in chapter six. 

4. Developing a statistical baseline for robot pursuit and evasion using a real 

world control architecture.– Mansfield, M, Collins, J.J, Eaton, M, O’Sullivan, 

S, Haskett, D.  This paper’s experimentation results were derived using 

software built upon the software architecture described in chapter four. 



 33 

Chapter 2: Map Building 

2.1 Map Building – An Overview 

Many biological entities sub-consciously and deliberately create maps of their 

environment using highly developed senses like sight and touch.  Depth perception 

gives us the ability to tell the relative distance of objects, we can recognise shapes and 

distinguish colours.  We are able to recognise locations and plan paths between 

different places, as well as knowing the spatial relationships between these locations.  

Most importantly we can update this cognitive map almost instantly based on new 

information, for example a new door being installed, or a previous open door being 

locked.  Unfortunately, as with other attempts to mimic humans and animals abilities 

with machines [4,49], getting robots to map their environments, recognise places and 

know the distance from one place to another is quite difficult and the subject of much 

study. 

 

There are two main questions that need to be answered when it comes to map 

building: 

1 What kind of map should be built – a metric grid-based map (Fig 2.1 (b)), a 

topological graph-based map (Fig 2.1 (c)), or a combination of both?  Part of 

this also has to do with how new information should be integrated with old 

information to produce an up-to-date map. 

2 How should the sensors be interpreted – i.e. what information can be 

extracted from a sonar or laser range reading, or a camera image, and how 

does one deal with inaccuracies or errors in the readings? 

 

To briefly answer the first question, there are many factors that go in to deciding what 

type of map to use.  These include ease of construction, equipment availability/cost, 

storage requirements, processing power requirements and suitability to the task at 

hand.  Metric (grid based) maps, which store information regarding the obstacles in an 

environment and the spatial relationship between them, are relatively easy to construct 

but need a lot of storage and can be computationally hungry.  Topological maps, 

which are graph-based structures that usually only record the existence of 

recognisable places and the paths between them with no distance informaiton, are 



 34 

more difficult to build but are very quick to plan paths with.  These are described in 

detail in section 2.3.  There are a number of different map-update procedures 

advocated by different researchers, from the relatively simple methods used by 

Moravec and Elfes [46], to more mathematically robust Bayesian update procedures 

used by Matthies, Elfes and Konolige [20,33,42].  Other approaches do not use a 

mathematical formula at all; instead they train a neural network to calculate the 

probability that a certain space in the environment is occupied [58].  These too are 

discussed at length later in the chapter. 

  

Fig 2.1 (a) A real-world environment with seven 

rooms.  Areas shaded black represent obstacles 

in the environment, white areas represent 

freespace. 

Fig 2.1(b) A metric map of Fig 2.1 (a) with seven 

rooms connected by doors. Space is divided into 

equally sized squares with obstacles/walls shaded 

black and empty spaces blank. 

 

Fig 2.1 (c) A topological map of the same area as 

Fig 2.1(a), with nodes representing places such as 

rooms, and edges representing navigable paths 

between these places, i.e. doors. 



 35 

As to the second question, how to interpret the sensors, there are a number of 

approaches for interpreting sonar readings, and the discussion and analysis of these is 

the main contribution of this masters.  Some approaches use gaussian error models of 

the sonars [33, 42, 46] which assume that if a sonar beam bounces off an object then 

the object is most likely at the centre of the beam and at the distance reported by the 

reading.  Another approach taken is to use neural nets to interpret the sonar readings 

and give a figure representing the probability of occupancy of a particular place in the 

environment [58].  These approaches, in their various forms, are discussed later in the 

chapter. 

 

2.2 Maps and Robot Architectures 

Each of the three most used robot architectures, SPA, 3T and subsumption, allow for 

the ability to create a map or a model of the robot’s surrounding environment.   

 

2.2.1 Maps and the SPA architecture 

Early research into autonomous robotics tended to use a three-step approach to 

navigation: first the robot attempts to use its sensors to build a model of the world, 

and second the robot uses the model to plan its actions, and finally it would act on 

those plans.  This was the Sense-Plan-Act cycle.  One of the better known examples 

of this is the Shakey STRIPS method [49].  For each action the robot took, it created a 

table representing its knowledge about the initial and goal states, calculated the 

distance between these states and applied an operator to shorten that distance.  

Whenever an action worked and brought the robot closer to its goal the action was 

added to a list of viable actions to use, and whenever an action failed it was added to a 

list of unsuccessful actions.  In this way it created a type of model of things it had 

learned, actions that it should take in certain states, and actions it should not.  While 

there were numerous problems with these early attempts, such as inaccurate models 

that came from assuming that the sensors were perfect, their main downfall was their 

speed, or lack of it.  The robots moved in very short steps, with long delays between 

steps.  The creation of the model of the environment got in the way of the operation of 

the robot, which led to a change in thinking regarding if and when an environment 

model should be updated. 

 



 36 

2.2.2 Maps and the Subsumption Architecture 

During the 1980’s some researchers became disillusioned with this state-based SPA 

approach, with perhaps the best-known being Rodney Brooks at MIT.  They 

attempted to minimise the amount of processing between sensing the environment and 

acting upon it’s findings, and through their research into behaviour based robotics [5], 

developed robots using a subsumption architecture.  These robots could simulate 

insect-level intelligence, performing simple tasks such as wall-following and obstacle 

avoidance.  The subsumption architecture divided its various functions into various 

layers, all of which could work concurrently to each other.  In this way the (optional) 

map building modules did not prevent the lower level behaviours such as obstacle 

avoidance and wall following from performing as they should. 

 

2.2.3 Maps and the 3T Architecture 

The 3T architecture, as outlined in Chapter 1, is made up of three layers.  The bottom 

two layers are used for real-time control, whereas the top layer contains all the time 

consuming operations that cannot guarantee completion of processing on one set of 

readings before the next set of readings are received.  It is in this top layer that map 

building algorithms reside. 

 

2.3 Map Types 

Once it is decided to use a map, the next decision is what type of map to choose.  This 

decision depends on the tasks the robot is required to perform.  The different types of 

maps can be broadly separated into four groups.  These are 

• Full metric maps.   

• Topological map.  

• Metric Topological maps.   

• Recognisable locations 

 

Metric maps describe the environment by subdividing it in one of two ways. 

(i) By feature – the map contains a list of primitive features, e.g. cylinders, cubes, 

and the properties of each [36].  For example, a wall can be represented as a 

line between point A and Point B (Fig 2.2), or a cabinet can be represented as a 

rectangle.  The distance and orientation of the shapes in relation to each other 



 37 

is known.  This type of map is comes as standard with the Saphira robot 

simulator used in experimentation, and an application of it is discussed later in 

relation to the work of Crowley [17]. 

(ii) By area – the map is divided into regions, with the properties of each region 

(usually whether or not it is occupied) being recorded (Fig 2.1 (a)).  These 

regions are generally represented as a grid with each square of the grid being 

the same size as all other squares. 

Metric maps are useful when there 

are few landmarks, e.g. open 

spaces, no walls.  Area based maps 

are typically used when the 

application is focused on the use of 

free space.  Feature based maps are 

used when the properties of the 

obstacles are of concern, and is 

often used for self-localisation 

because it is useful to know the 

orientation of objects when 

estimating the robots position. 

 

Topological maps record links between recognisable locations, and are usually 

represented as an undirected graph (Fig 2.1b).  A location is anything that the robot 

might be able to recognise, such as a room, or a distinctive object.  If a link exists 

between two locations it means that it is possible to travel from one location to the 

other.  A link can therefore be a door, or a corridor, and can only be created once the 

robot has actually navigated from one location to another.   

 

Topological maps are very useful when it comes to planning a path from one location 

to another.  An algorithm such as Dijkstra’s can be used to quickly find the least 

number of nodes necessary to visit in order to complete the journey.  This is 

considerably faster that path planning in a metric map, which usually consists of using 

an algorithm like A-Star to find the shortest path.  Unfortunately the path chosen for 

the topological map may not be the shortest however, due to the fact that it is not 

 

Fig 2.2 A feature based map based on same 

environment as Fig 2.1. 



 38 

known how far one location is from another, just that it is possible to reach one from 

the other. 

 

Topological maps are more difficult to construct than metric maps due to the 

difficulty in recognising locations.  For example, in an office environment many 

offices may look the same, and a robot can easily mistake one for the other. One 

method used to solve this problem [58] is to combine the relative ease of building 

metric maps with the speed of planning afforded by topological maps.  Building a 

grid-based map of the environment, then applying an algorithm to infer a topological 

map from it, does this.  The method used for the conversion is discussed later. 

 

Metric Topological maps are similar to topological maps, but provide additional 

distance information about the paths between locations so that instead of just knowing 

that it is possible to travel from location A to location B, we also know that they are 

20 metres apart.  This makes the path planning algorithms more optimal due to the 

fact that the algorithms don’t just count the number of different locations they have to 

visit before reaching a goal but can now judge the distance between places.   

 

 For example, if we had three locations, A, B and C 

with links from each location to both  

others, and we wanted to travel from A to C in Fig 2.3.  

It is possible to go from A  straight to C, or from A to B 

to C.  A simple topological map would count the 

number of locations it had to visit and choose the path 

AC.  However a metric topological map could tell us 

that the path AC is 100 metres, and the paths AB and BC are 20 and 10 metres 

respectively, resulting in a much shorter path.   

 

Metric topological maps can also help with landmark disambiguation i.e. they help to 

tell similar landmarks apart.  For example, if locations B and C look similar to the 

robot, but it knows that it was just in location A and had to travel 100 metres to get 

here, it is in location C since C is 100 metres from A, whereas B is 20 metres from A.  

A simple topological map would just know that it can get from A to both B and C and 

not be able to differentiate between the paths used to get where it currently is. 

 

Fig 2.3 Metric topological map 



 39 

 

Recognisable locations are the least useful type of map.  Using these, the robot knows 

where it is, but knows nothing about how to get anywhere else.  Some methods for 

recognising a location include using image recognition to identify something in the 

environment, such as a distinctive object recorded earlier, matching sensor readings 

against stored readings, using a Self Organising Map (SOM) to monitor the position 

of the robot by recognising similar groupings of data received by the sensors.  Using 

only recognisable locations enables the robot to know that it has been in this position 

before, which can be useful in some situations.  For example, a robot could be trained 

to recognise all recharge positions in a building, and each time it sees one it checks its 

battery power and decides whether or not it needs to use the recharge point.    

 

2.4 Previous Research in Map Building 

Much research has taken place in the area of feature-based maps.  The Stanford Cart, 

built by Hans Moravec during the 1970’s [45], used stereo vision to determine the 

location of features in 3D space, but was prone to mistakes and far too slow.  The cart 

could only move one metre every 15 minutes or so and this was done in fits and starts.  

It would move a metre, stop and take some pictures, and process them at length.  This 

processing involved applying an algorithm called the interest operator to the pictures, 

which picked out distinctive regions or objects in the pictures.  Next the correlator 

algorithm attempted to find these objects in previous pictures.  Finally the camera 

solver estimated the position of the objects based on their movement from picture to 

picture.  Obviously this is a huge amount of processing and the limited computers at 

the time could not handle the processing load.   

 

Moravec has recently revived the project [47] with a new robot and far more 

processing power.  His ongoing project using three cameras capable of colour 

stereoscopic vision in combination with distributed computing (part on-board, part 

off-board) is yielding impressive results, reproducing the real world in a reduced-

dimensionality 3D map.  It goes even further than the Stanford cart, taking the images 

from three cameras at the same time and using the colour of objects to correlate their 

position.  While the processing load is prohibitive meaning that the robot currently 

moves in slow steps, the algorithms are being designed with future CPU speeds in 



 40 

mind, and will soon be able to run in real time using an on-board computer and an off-

board workstation connected via radio. 

 

Crowley [15] simplified Moravec’s three dimensional model by assuming that the 

world could be modelled in 2D space rather than 3D, and modelled the world as a 

collection of line segments using a rotating sonar for its sensor.  His view was that for 

robot navigation it didn’t matter if there was a book on a shelf, all that mattered was 

whether or not the floor space was occupied.  Crowley’s maps used both the area 

based metric approach and the feature based approach.  The map is first built using a 

grid representation (area based) for ease of construction, then lines are extracted from 

it for compactness and processing speed.  Crowley’s mapping algorithm kept two 

maps, a global map and a local map which only contained what the robot could 

currently sense.  The local map is constantly being matched against the global map to 

localise the robot and compensate for wheel slippage, and is also being integrated into 

the global map to provide new information.  Crowley’s work will be discussed at 

length later in the chapter. 

 

In part due to the inability of the Stanford Cart to operate in real time, Hans Moravec 

and Alberto Elfes [46] proposed a two dimensional representation of the environment.  

This representation divided the area into a grid of squares with sonars being used to 

determine the probability of occupancy of each square.  The more often a sonar 

reading reported that there was an object at a given square, the higher the probability 

that it was occupied, and the more often a square failed to make the sonar beam 

bounce off it, the higher the probability that it is not occupied.  Elfes followed up on 

this work in later papers, developing better mathematical models for integration of 

new data [42] and attempted to infer a large number of properties about the 

environment from the grid map [20] with varying degrees of success.  Elfes work, 

which has strongly influenced this thesis, is discussed later in the chapter. 

 

Kurt Konolige took the work of Moravec and Elfes, as well as other researchers who 

had developed area-based maps, and identified one of the largest problems, that of 

redundant information.  That is, using information that tells us nothing new about the 

environment, and allowing it to affect the world model.  He developed the pose 

bucket method to discard useless information, as well as creating a new mathematical 



 41 

model, the multiple target model, for integrating new information into the map.  

Another of Konolige’s contributions to the field of map building is his attempt to deal 

with the problem of noisy sonars using past information to calculate what he called 

the probability of specularity of each sonar reading.  All of these are elaborated upon 

further later in the chapter. 

 

2.5 Metric Area Based Maps 

This thesis is primarily concerned with the construction of area based metric map, for 

their usefulness, their popularity with other researchers and their relative ease of 

construction over topological approaches which often stray into the area of image 

recognition.  Area based maps come under many different headings, but they all have 

one thing in common – they are all divided into distinct regions with each region 

recording a property about itself (usually occupancy).  When designing an area-based 

map, three questions need to be answered: 

1. What shape and how large should the regions be? 

2. What numbers should be stored for each region? 

3. How should the numbers be updated? 

 By far the most logical and efficient shape to use in an area based metric map is the 

square, and it is used by more or less everyone in the map building field.  However 

the question remains as to how big the squares should be, and what’s the minimum 

size achievable for real time operation and with the accuracy of the sensors? 

 

As to how small the squares can be, this depends on both the speed of the computer 

used and the accuracy of the sensors.  A laser sensor is much more accurate than a 

sonar emitter, and can therefore provide information about a smaller area.  

Performance can become a problem when the squares are too small, as there are many 

more values to update and use.  For example, when a sonar reading gives information 

about a area of one square metre, there much more work must be done to update the 

cells representing that are when there are 10,000 values per square metre (each square 

1cm to a side) than when there are 100 values (each square 10cm to a side). 

 

 



 42 

  

Fig 2.4 (a) Area based representation of an 

area. 

Fig 2.4 (b) Same area as 2.4(a), divided into 

areas of equal value. 

 

Fig 2.4 (c) Quad tree representation of (a) and (b).   

Node A is the universal node, which represents the complete map.  Its four child nodes are B, 

C, D and E, each of which gives more detail about a particular quadrant of its parent node’s 

area.  Each of these are broken down further into more children nodes if all the values 

contained in that quadrant are not uniform.  Referring back to Fig 2.4 (a), because all cells in 

the top left quadrant have the same value, they can be represented by a single node, B, 

rather than sixteen different values, as in Fig 2.4 (a). 

 

When deciding how large the squares should be, there are two possible approaches – 

grids with all squares the same size (Fig 2.4 (a)), and quad-trees, a more efficient 

method for sparse environments (Fig 2.4 (c)) with different sized regions. 

A regular grid can be very inefficient when storing many similar numbers, for 

example with large open spaces.  This is due to the fact that it stores a number for 

every possible region regardless of whether or not it is identical to all those around it.  



 43 

However, they are very quick to update, since an update simply requires a Cartesian 

coordinate to identify the square to be changed, and a number being updated doesn’t 

mean that the table’s structure has to be altered.   

 

Quad trees are very efficient when it comes to storing large amounts of identical 

numbers.  This is because they only create the storage space necessary to store a 

number if it is different from the other numbers in its quadrant.  For example, in Fig 

2.4 (a), all of the numbers in the top left quadrant are the same, so they only have to 

be referenced by a single node, B, in Fig 2.4 (c).  There is more variance in the 

numbers in the top right quadrant, so it consequently requires more nodes as can be 

seen with the numerous children of node C.  Quad trees are slower to use than a static 

grid, as one cannot simply assign a value to a Cartesian position – the new value must 

first be compared to the current leaf’s value, and if they are different four children are 

created and their values assigned to them.  This all adds to the processing load.  

Which method to use depends on which is more at a premium, processing power or 

memory.   

 

In the modules used in the experiments carried out in this research, even-sized grids 

were used to store the maps since the amount of memory required, less than 10 

megabytes, falls well within the memory capacity of a standard desktop computer.  

Quad trees are used to store pose buckets (see section 2.11.7) due to the prohibitively 

large amount of information they are required to store. 

 

The type of numbers held in each region depends on the application, but a common 

method is to record the occupancy status (unknown, empty, or occupied) and a 

probability value.  Sonar sensor readings are taken from multiple positions using an 

array of emitters whose position in relation to each other is known.  These are then 

interpreted to give distance information and projected onto a 2-D grid-based map.  

Due to the fact that sonars are inherently unreliable, what with all the noise from 

specular reflection and sound-absorbing substances, this grid is probabilistically 

plotted, as we can only specify our degree of certainty of occupancy of any particular 

cell.  Moravec and Elfes [46] proposed using numbers in the range [-1, +1], with 

numbers less than zero indicating a level of certainty that a given cell was empty, 

greater than zero indicating occupation, and numbers equal to zero indicating the 



 44 

absence of information on that cell.  Each cell of this grid is therefore assigned a 

value, in the range [-1, +1], which is called its occupancy value.   

 

Updating was originally done using a simple addition rule to merge new data with 

old.  More recently, this has been superseded by a more mathematically rigorous 

Bayesian update rule.  This has led to the majority of other researchers using numbers 

in the range [0, 1], with 0 representing an empty area, 1 an occupied cell, and 0.5 

representing a lack of knowledge about the area.  The advantage of this is that when 

the number 0.5 is put into Bayes equation, meaning that we know nothing new about 

the environment, no change is made to the cell value. 

 

These metric maps have many advantages to map builders.  They are relatively easy 

to construct, facilitate path planning, and are useful in map matching for self-

localisation.  Places and obstacles are also represented in relation to the robot’s 

assumed position, which means that similar looking places, such as identical offices, 

can be recognised as being dissimilar, unlike topological approaches. 

 

A key disadvantage of the metric approach is its computational cost.  A grid of n*m 

evenly sized cells requires the same amount of space, regardless of the complexity of 

the environment.  Quad trees solve this problem, but are slower to operate.  Path 

planning is also inefficient when compared with topological approaches, with every 

possible path needing to be tested to see if it is the best.  Metric methods can suffer 

greatly from errors in odometry such as drift and slippage, and these must be 

constantly compensated for with self-localisation techniques. 

 

2.6 Topological Maps 

Topological approaches differ from the metric approach insofar as they do not have a 

global coordinate system.  The theory is that it is not strictly necessary to know every 

property of an environment.  For navigation, it is only required that the places and 

objects necessary for the completion of the goal be known – each being represented as 

a node in a graph – as well as how to navigate from one node to another.  To this end, 

the topological approach stores the map as a graph, with the nodes representing 



 45 

recognisable locations or landmarks, with the edges representing clear paths from one 

node to another, usually doors or corridors. 

 

An obvious advantage to this approach is the huge savings in both the space it takes to 

store, and the time it takes to plan a path.  If it is sufficient to model only the 

properties of the environment of use to the robot, rather than recording every possible 

feature, then the size of the graph is directly linked to the complexity of the map, and 

is often many orders of magnitude smaller than a metric map.  As for path planning, a 

simple algorithm such as Dijkstra’s algorithm can be used to compute the shortest 

path between any two nodes. 

 

Unfortunately, topological maps can be difficult to build.  They have also been known 

to exhibit the perceptual aliasing problem, i.e. to confuse similar looking places, as 

they do not store the geometric relation between these places and other nearby 

landmarks, just the existence of paths between them.  For this reason, they can be 

unreliable when it comes to self-localisation.  

 

2.7 Sensors Used in Robotics 

In robotics, a sensor is any piece of equipment which retrieves data on either 

properties of the environment or the robot’s relationship with the environment.  There 

are a wide variety of sensors available for use in mobile robotics.  These include 

sonars, stereo vision, laser range finders, infrared sensors, wheel encoders and touch 

sensors, among others.  Each sensor has its advantages and drawbacks. 

 

Sonar sensors measure the distance, or range, to the nearest obstacle by emitting a 

high frequency pulse of sound.  This is called active sonar, and is different to the 

passive sonar used in submarines.  Where passive sonar simply listens for sounds, 

active sonar creates a sound and waits for the sound wave to hit something.  Ideally, if 

the sound wave hits an obstacle, it will reflect back to the sensor.  The sonar sensor 

measures the time between emitting the sound and the reflection returning, divides 

this by the speed of sound and estimates the range to the object as being that number 

divided by two (the distance to the obstacle and back).   

 



 46 

Sonar sensors have a number of advantages: 

• Speed of processing – sonars return a range reading very quickly, requiring 

little or no processing to determine the position of and distance to an obstacle 

• Cheap – in comparison to other sensors such as laser range finders and stereo 

vision, sonars are relatively inexpensive, leading to their widespread 

popularity with researchers in robotics. 

• Sensing a volume – the sonar beam expands from the sensor in a cone-shaped 

fashion, covering a wide area.  This means it is less likely to miss a small 

object in its field of view, unlike, say, a laser. 

Unfortunately sonars have a number of drawbacks.  These include: 

• Inaccurate and noisy – an object in the sonars beam does not always cause an 

echo due to it’s orientation, or a beam can bounce off multiple objects before 

returning to the sensor, giving a reading that is too large.  Much of the 

research in the field of map building involves compensating for this noise. 

• Difficult to determine which part of the beam the object is in.  Due to the 

width of the beam, we only know that there is an obstacle somewhere in the 

beam.  Additional readings from other positions are needed to identify the 

obstacles exact position. 

• Physically noisy – sonars, based as they are upon emitting a sound wave, 

make a clicking noise audible to the human ear, which can be intrusive. 

 

Despite the problems associated with sonars, they are the primary sensing mechanism 

used in this thesis and by the researchers whose work is presented later in this chapter.  

Their computational economy, usefulness in obstacle avoidance and low cost means 

that they are present in the vast majority of mobile robots, and therefore worthy of 

further study.  

 

Laser sensors are similar to sonars insofar as they measure distances using time of 

flight (TOF) methods.  They emit many laser beams which are much narrower than 

sonar beams, usually with around a 0.5 degree spread, in comparison with a 25
o
 – 30

o
 

spread for sonars making them much more accurate.  However, they have some 

drawbacks.  Laser range finders are considerably more expensive than sonar sensors, 

and they detect objects in a plane as opposed to the sonars volumetric sensing.  This 



 47 

means that if a object is just above or below the height the laser is at it will not be 

detected. 

 

Stereo vision is a promising sensing method that uses two cameras placed in different 

positions capturing images that are then analysed to detect objects.  There are many 

different methods to carry out this analysis, the details of which are beyond the scope 

of this work.  One of the most common methods involves taking simultaneous 

pictures of the environment and applying an edge detection algorithm to determine 

where the edge of an object is.  The edges in both images are matched with each other 

and the distance between corresponding images is used to determine the distance to 

the object.  Stereo vision systems have the advantage of being able to detect obstacles 

that sonar and laser may miss, for example a hole in the ground.  There is also work 

being carried out at the moment to use the colour of objects to identify and separate 

them [47].  Unfortunately, vision sensors have a number of drawbacks.  Firstly, they 

require considerable processing, since each image contains far more information than 

a simple range reading.  This means that for quick obstacle avoidance, stereo vision is 

not nearly as useful as sonar or lasers.  Secondly they can miss many objects in a 

picture.  A wall, for example, only has edges at either end of it and at doors.  A stereo 

vision system using edge detection will look at a wall, detect both ends of it, and may 

fail to extrapolate the wall in between the two end points.  This is in contrast to sonar 

and laser range finders that reflect their beams off solid objects.  Thirdly, vision 

systems can function badly in poorly lit areas. 

 

Wheel encoders (also called odometry) count the number of revolutions of the wheels 

and tells the robot how far it has gone and in what direction.  Wheel encoders differ 

from the three sensors described above in that they do not tell the robot anything new 

about the environment.  Instead wheel encoders provide the robot with information 

about itself.  These very simple sensors are extremely useful for robotic navigation, 

but unfortunately they suffer from inaccuracies.  Phenomena such as wheel slippage, 

differences in tire pressure and angular drift cannot be measured by the wheel 

encoders.  This means that odometry should be used as a guide to the general distance 

and angle the robot has travelled, but the robot’s estimation of its position must be 

refined using some localisation method if it is to be sure of its position. 

 



 48 

Touch sensors are activated when the robot hits an obstacle and are generally a simple 

on-off switch.  Unlike all the sensors listed above, touch sensors are more or less 

infallible, if they are pressed then robot has definitely hit something.  Unfortunately, if 

this happens then it means that all the other sensors have failed, so touch sensors can 

be seen as the robot’s last line of defence. 

 

2.8 Map Building Approaches Evaluated Experimentally 

Three approaches to map building were implemented and evaluated for this thesis.  

They were based upon theories put forward in the following publications: 

• Moravec and Elfes seminal 1985 paper High Resolution Maps From Wide 

Angle Sonar [46].  This uses a two dimensional gaussian sonar model and a 

simple occupancy update procedure. 

• Matthies and Elfes 1988 paper Integration of Sonar and Stereo Range Data 

Using a Grid Based Representation [42].  This uses a two dimensional 

gaussian sonar model with a Bayesian probability of occupancy update 

procedure. 

• Konolige’s 1997 paper Improved Occupancy Grids for Map Building [33].  

This uses a sonar model based upon the normal distribution and what the 

author calls the Multiple-Target Model.  It also introduces a method for 

enforcing the Independence Assumption for sonar readings, called pose 

buckets. 

 

These three methods are discussed below. 



 49 

2.8.1 Moravec and Elfes - High Resolution Maps From Wide Angle Sonar 

2.8.1.1 Occupancy Grids  

Major interest in metric maps was generated with the publishing of Moravec and 

Elfes’ 1985 paper, High Resolution Maps from Wide Angle Sonar [46].  Their 

approach involved taking range measurements from a fixed array of sonar sensors 

arranged in a circular fashion whose position and angle in relation to each other is 

known.  This range information is then translated onto a two-dimensional map by 

making the assumption that one of the points along the curved end of the arc is 

occupied by an obstacle (see Fig 2.6), and incrementing the probability that all points 

along the curve are occupied.  The model they developed for this map was a 

tessellated spatial random field called an Occupancy Grid.  Conversely, if it can be 

assumed that a certain range reading means that an obstacle is in the beam’s path at 

that distance, all points in the body of the beam can be assumed to be free of 

obstacles, and their probabilities of occupancy decremented appropriately.  While a 

single sonar reading yields very little information, each one changes the map slightly, 

and with a reading every 100ms, a strong confidence grid is quickly generated.  

 

Because of the wide beam aperture, in 

this case 30
o
, a range reading only gives 

indirect information about the occupancy 

of a cell, i.e. we assume that there is an 

obstacle somewhere in the area covered 

by the range minus the expected sonar 

error, R - ε, and the range plus the sonar 

error, R + ε.  Also we assume that there 

is no obstacle in the body of the beam 

that is closer than the range minus the 

sonar error.  However, our certainty of 

this fact decreases as the distance from 

the sonar increases, and the nearer the 

cell is to the edge of the beam, as the 

Sonar 

Cone 

Robot 

Obstacle 

 

Fig 2.5 Robot with sonars reflecting off 

obstacles. 

 



 50 

probability of obstacle detection at the extremes of the beam is less than at the centre 

axis and near to the sensor.  It is necessary to model this when translating a range 

reading onto a two-dimensional map (see Fig 2.6). 

 

 

 

 

 

 

 

 

 

Fig 2.6 illustrates Moravec and Elfes’ 1985 model of the sonar beam.  In this model,  

• S is the sonar sensor 

• P is the cell being updated 

• ε is the mean sonar deviation error 

• ω  is the beam aperture, the angle at which the beam spreads from the sensor S 

• δ is the distance from P to S 

• θ is the angle between the main axis of the beam and the line SP. 

• R is the range reading – the distance the sonar beam travelled before it 

bounced off an object 

 

A system developed using the 

methods laid down by Moravec 

and Elfes (see Chapter 4 for the 

implementation of this paper used 

in experimentation called ME85) 

uses three maps to store the two-

dimensional representation of the 

world.  One stores the probability 

of each cell being empty, another 

stores the probability of each cell 

being occupied, and the final map 

 

Fig 2.6 Modelling the sonar beam. 

 

 

Fig 2.7 A sonar beam probability distribution.  

The darker the shading the higher the probability 

value for that point, either PE(X,Y) for the 

unoccupied area(on the left) or PO(X,Y) for the 

occupied area (on the right). The occupied area is 

enlarged for clarity. 



 51 

stores the combination of the other two.  Here follows an explanation of how the 

Moravec and Elfes method judges the probability of occupancy and of emptiness from 

a sonar reading.  Fig 2.7 above is an example of the result of the following 

calculations. 

 

The probability of any cell being empty, PE(X,Y) = Er(δ) * Ea(θ).   

Er(δ) is the probability of the cell being empty based on the distance of the cell from 

the sensor.  Ea(θ) is the probability of the cell being empty given the angle between 

the central line of the beam and the line from the sensor to the cell.  

� ( )
( ) ( )( )






 −≤≤−−−−
=

otherwise

RRRRR

E
minminmin

r

0

for1
2 εδεδ

δ  

In plain English, this means that as the cell being updated moves farther away from 

the sonar, Er(δ) becomes smaller, and therefore the probability of it being empty 

becomes smaller.  If the distance of the cell from the sensor, δ, is greater than the 

range R or is less that the shortest possible range reading Rmin, then it is not in the part 

of the beam thought to be empty, so the probability of it being empty is set to zero.  

� ( ) ( ) ( ) ( )22for21
2 ωθωωθθ ≤≤−−=aE  

This means that the closer the cell is to the central beam, the greater the chance that 

the sonar would have detected an obstacle had there been one, and therefore the 

higher the probability that the cell is empty.  It also means that cells at a greater angle 

from the sensor than half of the beam width ω are not considered as the beam contains 

no information about them. 

 

The probability of a cell being occupied, PO(X,Y) = Or(δ) * Oa(θ). 

Or(δ) is the probability of the cell being occupied given the distance of the cell from 

the distance measured by the range reading.  Oa(θ) is the probability of the cell being 

occupied given the difference in the angle between the central axis of the beam and 

the line from the sensor to the cell. 

� ( ) ( )( ) ( ) ( )εδεεδδ +≤≤−−−= RRROr for1
2

 

� ( ) 0=δrO if the cell is not in the occupied region (shaded region in Fig 2.6). 



 52 

This means that the greater the distance the cell is from the actual range reading, the 

lower the probability that it is the cell that caused the sonar beam to be reflected.  

Therefore the higher probabilities are grouped at the distance the sonar reported as a 

range reading, with the lowest values being at the distances R - ε and R + ε. 

� ( ) ( ) ( ) ( )22for21
2 ωθωωθθ ≤≤−−=aO  

This means, as with Ea(θ), the greater angle between the the central axis of the sonar 

and the line from the sonar to the cell, the lower the probability that it caused the 

sonar beam to be reflected.  Therefore the highest values will be grouped at the central 

axis of the beam, with the values decreasing as they approach the sides of the beam. 

 

At this point, after reading a single range measurement, we now have a small amount 

of information regarding the occupancy of the cells in the sonar beam.  As mentioned 

earlier however, a single reading is not very useful in and of itself.  It must be 

integrated with previous readings to be of any significant use.  Moravec and Elfes 

propose a number of steps to achieve this update.  The steps are not symmetrical on 

the Empty and Occupied maps.  This can be explained by the fact that the empty and 

occupied areas represent two different situations.  Since we are assuming that a single 

cell caused the sonar reflection, the occupied area represents just one occupied cell.  

We assume that there is definitely an occupied cell in that space, with a probability of 

1, but that value must be spread over all the cells in the occupied area of the arc, 

therefore we normalise the values to sum to one.  The empty area, on the other hand, 

represents a ‘solid volume whose totality is probably empty’ [46].  This means that 

we are assuming that there is no obstacle in the empty area of the arc, that each of the 

cells are empty.  That is, we claim to know the state of all empty cells, while we only 

know the state of one of the occupied cells.  There are some inconsistencies with their 

approach, which are discussed in section 2.9.3. 

 

To update the Empty map, for every sonar reading we Enhance the prior value of the 

cell in the Empty map Emp(X,Y) with the new value PE(X,Y) calculated using the 

formula: 

� Emp(X,Y) =  Emp(X,Y) + PE(X,Y) - Emp(X,Y) * PE(X,Y) 

For example, if our prior belief that the cell was empty was 0.9, or 90%, and our new 

belief that it is empty, PE(X,Y), is 0.4. then our new belief that it is empty is (0.9 + 



 53 

0.4) – (0.9 * 0.4) = 0.94.  It might seem strange to some that integrating a lower 

certainty with a higher one should yield an even higher value.  However it does make 

sense – the previous value claimed that the cell was empty with a degree of certainty 

of 90%, and this new sonar reading is confirming that belief not disputing it, so the 

combined value of both these estimates should increase our confidence in the 

emptiness of the cell, not decrease it. 

 

The next step is to update the Occupied map.  First we Cancel the occupied 

probabilities in response to the supposed emptiness of the cell.   

� PO(X,Y)= PO(X,Y) * (1 - Emp(X,Y)) 

For example, if the latest reading claims it is 0.8 sure that a cell is occupied, but our 

previous readings claim that there is a 0.5 chance that the cell is unoccupied, then we 

recalculate our estimation of occupancy to 0.8 * (1 – 0.5) = 0.4.  This means that if a 

previous reading disagrees with our current one, then we are less sure that this reading 

is correct, and so reduce it’s value by an amount proportional to the strength of the 

evidence against it. 

 

Secondly, all the occupied cells are Normalised to sum to one. 

� PO(X,Y)= PO(X,Y)/ Σ PO(X,Y) 

This is because it is assumed that only one single grid cell caused the reflection, but it 

is impossible to be certain which one, so it is necessary to distribute that probability 

over all the possible cells in the arc so that they all add up to one. Thirdly, for each 

sonar reading , the Enhance step from earlier is repeated. Here Occ(X,Y) on the right 

of the equation represents the prior belief that a cell was occupied, and Occ(X,Y) on 

the left of the equation represents the newly calculated belief that the cell is occupied: 

� Occ(X,Y) = Occ(X,Y) + PO(X,Y) - Occ(X,Y) * PO(X,Y) 

For example, if the prior belief in the occupancy of the cell was 0.7, and the new 

reading claims that it is 0.3, or 30% sure that the cell is occupied, then the new belief 

that the cell is occupied is (0.7 + 0.3) – (0.7 * 0.3) = 0.79. 

 

Finally, it is necessary to combine both the Empty map and the Occupied map into a 

single map.  This is done with a Thresholding step, where the largest value of the two 

maps for each cell is chosen for inclusion in the main map. 



 54 

� Map(X,Y) = Occ(X,Y) if Occ(X,Y) ≥ Emp(X,Y) 

otherwise 

� Map(X,Y) = Emp(X,Y) * -1 

If the belief that the cell is occupied, Occ(X,Y), is greater than the belief that it is 

empty, Emp(X,Y), then we make the value of our main map equal to Occ(X,Y).  

Otherwise we make our main maps value, Map(X,Y), equal to Emp(X,Y).  This 

means that, while both the Empty and Occupied maps contain values from 0 to 1, 

where 0 represents the certainty that it is not Empty and not Occupied respectively, 

the main map contains values from –1 (definitely unoccupied) to +1 (definitely 

occupied), with zero representing a lack of, or conflicting, information about the cell. 

 

 

Fig 2.8 Map Generated using Moravec and Elfes’ method in a simulated run around the CSIS 

building’s first floor.  White areas represent empty space, black areas represent obstacles, 

while grey areas are unknown.  Note that very few walls have been identified due to the lack 

of compensation for incorrect readings. 

 

2.8.1.2 Issues with Moravec and Elfes’ 1985 model 

As with most pioneering efforts, there are a number of problems with Moravec and 

Elfes’ original mapping algorithms.  The two main weaknesses lie in the assumptions 

made about the properties of the sonar reflection.  These were: 



 55 

1. If  an object is in the sonar beam, it will cause a diffuse reflection back to the 

sonar emitter, regardless of it’s orientation. 

2. If one object causes a reflection, there is no other object in the sonar beam. 

The first assumption ignores the 

large problem of specular 

reflection ( see Fig 2.9).  There 

are two types of reflection, 

diffuse and specular.  Diffuse 

reflection occurs when the 

surface roughness is larger than 

the wavelength of the beam, 

which causes the energy to be 

refracted in all directions.  In this 

case, the emitter receives a 

correct reading,  within certain 

error bounds.  Specular reflection 

occurs when the surface is 

smooth, in which case the energy 

is not scattered.  Rather, it is 

reflected at a similar angle to which it struck the object.  If the object is at an angle 

sufficiently far from perpendicular to the emitter, typically around 25
o
 to 30

o
, the 

energy will reflect away from the emitter. This results in either no return signal being 

received by the sensor, in which case the space occupied by the obstacle is marked as 

empty, or giving a spurious reading after bouncing off multiple surfaces, in which 

case an area that may not be occupied is labelled as such. 

 

The second problem with this approach is the single-target assumption.  There are 

two facets to this.  The first is that Moravec and Elfes method assumes that if a sonar 

beam bounces off an object, only one cell along the edge of the beam is occupied.  

The second is that the reading received by the emitter is merely the first signal 

returned with any following signal being ignored.  This means that Moravec and 

Elfes’ mathematical model does not consider the fact that there might be other objects 

in the sonar beam that might be reflecting it, as with the upper obstacle in Fig 2.10 

which is large enough to occupy more than a single cell.   

 

Fig 2.9 Specular reflection, with the signal emitted by 

sonars 0 and 5 returning a correct reading, and the 

beam from sonar 1 being reflected away at an angle 

and returning no reading to the emitter. 



 56 

 

Fig 2.10 Multiple reflections from a single sonar pulse – all except the first 

are ignored. 

 

Another object can be further away than the nearest obstacle, as in the lower obstacle 

in Fig 2.10, in which case the reading arrives back at the sensor later and is 

automatically ignored.  There can also be another object at the same distance as the 

reflecting object, and reflecting at the same time.  Either way, the model used here 

normalises all values in the occupied area of the beam to one.  A proposed solution to 

this problem, the MURIEL method by Kurt Konolige, is discussed later in section 

2.8.3.   

 

While there are many shortcomings to the original paper by Moravec and Elfes, it 

must be said that it constitutes an excellent platform to build upon, and as such is the 

starting point for many researchers in the field.  For this reason, as the first iteration of 

experimentation, a working version of the system proposed by Moravec and Elfes 

[46] was developed, without the map-matching (localisation) capabilities.  Results 

were taken of the operation of this system, then modifications were made to the model 



 57 

to counter some of the deficiencies in the original theory.  These are explained in 

depth in Chapter 4. 

 

2.8.2 Matthies & Elfes – Integration of Sonar and Stereo Range Data Using a 

Grid Based Representation 

In 1988, Alberto Elfes followed up his earlier Occupancy Grid work with a paper on 

the integration of stereo vision data and sonar data.  The key contribution of this paper 

was the change of the update function.   

 

2.8.2.1 A Framework For Combining Sensor Data From Multiple Senor 

Types 

The new framework is an enhanced version of the previous occupancy grids, but with 

the added capability to fuse the readings from many different types of sensors.  The 

system, which can be seen in Fig 2.11, begins each cycle by taking in readings from 

the sensors.  The Spatial Interpretation Model converts the sensor reading into a 

statement about the occupancy of certain parts of the grid, and the Sensor Uncertainty 

Model applies the conditional probability density function (cpdf) 

( )tenvironmenofstateRreadingsensorp  to the reading in order to model our 

confidence in the sensor reading.  This cpdf  is represented in the later formulas as 

( )is|eP  which in English means: what is the probability of receiving this piece of 

evidence e, given that the cell is in state si?.  While the paper strangely never fully 

elaborates on the exact function used, from the diagrams provided it can be assumed 

that the authors are using the function from Elfes’ earlier 1985 paper with Hans 

Moravec [46] for calculating PO(X,Y) and PE(X,Y), the probability of a cell being 

occupied or empty respectively.  These are discussed in the previous section.  This 

generates what is called the Sensor View, which is our interpretation of what the 

sensor is seeing. 

 

Unfortunately it can never be determined with absolute certainty the position the robot 

was in when the sensor reading was taken in relation to where it was when previous 

readings were taken, and this uncertainty must be incorporated into the model.  The 

Sensor Position Uncertainty Model performs this function.  The robot has, through 



 58 

some localisation mechanism, a measure that denotes its certainty that it is in a 

particular position.  This is incorporated into the Sensor View to create the Robot 

view – our belief of what the robot is seeing. 

 

The final two stages focus on 

integrating the various sensor 

views.  The first stage, the 

Sensor Map Updating Model, 

combines all robot views 

formed from the same type of 

sensor into a single view.  For 

example, with an array of 

sonar, a separate view would 

have been created for each 

emitter, and these would all 

be integrated to form a single 

sonar-view.  The final step, 

the Sensor Integration Model, 

integrates all the views from 

the different types of sensors 

to form a Global Map.  It 

does this using the Bayesian 

update approach explained 

below. 

 

 

 

 

2.8.2.2 Using Bayesian Probability Theory To Update Map Values 

Despite the usefulness of the framework Elfes designed, the most significant advance 

was the development of a Bayesian Model for updating the Occupancy Grid.  With 

this new model, the old method of updating the occupancy grid described in the 1985 

paper is abandoned in favour of a more accurate, mathematically robust model.  For 

 

Fig 2.11 A Framework for Occupancy Grid-Based Sensor 

Integration. 



 59 

this paper it is necessary to calculate is the state of a particular grid cell given a piece 

of new evidence.  We begin with Bayes basic update theorem:  

( ) ( ) ( )
( ) ( )∑

=

j

jj

ii

i
sPseP

sPs|eP
e|sP  

where si is the state being estimated, and e is the new evidence, such as a sonar 

reading.  P(si) is the prior probability of the cell having a certain value, either 

occupied of empty.  What is required to calculate is the probability of the state of a 

cell being occupied, s(C)=OCC, or the state of a cell being empty s(C)=EMP, given 

the new range reading, i.e. P(s(C)=OCC | R) and P(s(C)=EMP | R), which will from 

now on be referred to as P(OCC | R) and P(EMP|R) respectively.  When updating the 

prior probability with a new value, Bayes theorem can be expressed as: 

 ( ) ( ) ( )
( ) ( ) ( ) ( )EMPPEMPRPOCCPOCCRP

OCCPOCCRP
ROCCP

||

|
|

+
=  

where P(OCC) and P(EMP) are the prior probabilities.  But since the probability of a 

grid cell being occupied is equal to one minus the probability of it being empty, it can 

be said that  

P(EMP) = 1 – P(OCC) and P(R | EMP) = 1 – P(R | OCC)  

and vice versa.  The above formula then simplifies down to:  

( ) ( ) ( )
( ) ( ) ( )( ) ( )( )OCCPOCCRPOCCPOCCRP

OCCPOCCRP
ROCCP

−−+
=

1|1|

|
|  

with the need to calculate the empty probability factored out.  P(EMP | R) can be 

calculated in the same way.  To carry out this computation, it is only necessary to 

compute the sonar model, ( )OCCRP , which is a simple Gaussian noise dispersion 

model like the one used in Elfes 1985 paper [46] to calculate PE(X,Y) and PO(X,Y) as 

shown in Fig 2.12.  All other terms are lookups in a table. 



 60 

 

 

 

 

 

 

 

 

 

 

2.8.2.3 Advantages To Using Bayesian Map Updates  

There are three advantages to using this update rule. 

1. It is both associative and commutative, so that data in a multi-sensory system 

can be incorporated into the model in any order. 

2. If a grid cell has a value of UNKNOWN, P(OCC) = 0.5, integrating new 

evidence E = P(R | OCC) gives E as a result. 

3. Conflicting measurements cancel each other out.  If evidence of equal strength 

is received for both OCC and EMP, a value of UNKNOWN is produced. 

4. Forms the basis for more complex, mathematically robust formulae, such as 

that developed by Konolige in [33] and presented in section 2.8.3. 

 

2.8.2.4 Disadvantages To Using Bayesian Map Updates 

There are two key disadvantages to using the Bayesian update formula.  The first is 

that a single update can change the occupancy value of a cell drastically.  For 

example, given a prior probability of 0.5, and a new update of 0.1, the posterior 

probability of occupancy is 0.1. 

 ( )
( )( )

1.0
45.005.0

05.0

5.011.015.0*1.0

5.0*1.0
| =

+
=

−−+
=ROCCP  

A single incorrect specular reading could therefore alter the map considerably.  An 

approach that used smaller increments is desirable, where a map is built using many 

sonar readings, rather than just one or two readings being used to determine the 

occupancy of a cell. 

 

Fig 2.12 Using a two dimensional gaussian sonar model to calculate 

P(R|OCC) – see section 2.9 for discussion of this model. 



 61 

 

The second disadvantage to using the Bayesian update rule is that once 

( )OCCP converges to either one or zero it cannot be changed.  For example, take the 

scenario where the previous occupancy value of a cell is zero: 

 ( ) ( )
( ) ( )( )( ) ( )

0
|1

0

01|10*|

0*|
| =

−
=

−−+
=

OCCRPOCCRPOCCRP

OCCRP
ROCCP  

No matter what value is given for ( )OCCRP | , once the prior probability is zero, it 

will remain zero.  The same holds true for when the prior probability is one.  This 

issue is related to the first disadvantage mentioned above.  If a small number of 

specular readings can alter the occupancy values to a large degree, and once a cell has 

converged to zero or one it cannot be changed, then it will be impossible to 

compensate for noisy readings with a sufficient number of accurate readings. 

 

2.8.2.5 Implementation Details 

Matthies and Elfes’ paper is implemented in the ME88 module, which is described 

fully in chapter 4, with experimentation results, both simulated and real-world, being 

presented in chapter 6.  A modified version of the paper, called ME88mod is also 

described in chapter four. 

 

2.8.3 Konolige - Improved Occupancy Grids for Map Building 

Occupancy grids, as previously discussed, are a probabilistic method for fusing 

multiple sensor readings into surface maps of the environment.  One of the main 

challenges is how to apply occupancy grids to real-time sensor interpretation.  Here 

follows a brief discussion on the significance of refined sensor models and 

independence assumptions are crucial issues with respect to occupancy grid 

interpretation. 

 

The unreliability of sensor readings has caused many problems for those working with 

mobile robots.  Occupancy grids are one of the most popular ways of compensating 

for this.  Using this method, space is divided into a regular grid, with an estimate of 

the probability of each cell being occupied being calculated.  Two common problems 

that sonar sensors suffer from are: 



 62 

• specular reflection, where the energy from the device is reflected off several 

surfaces before returning to the device, or is reflected off a the nearest surface 

at a wide angle and never returns to the emitter. 

• redundant information, where it is assumed that each new sonar reading gives 

new information, when often it is simply repeating what sensed previously.  

 

The MURIEL method (Multiple Representation, Independent Evidence Log) for 

updating occupancy grids was developed by Kurt Konolige [33] in an attempt solve 

these problems.  This method splits the sensor model into two parts.  Firstly, it adjusts 

the model mixture dynamically for each new reading, resulting in a better estimation 

of occupancy.  The model mixture is the degree to which we believe that the sonars 

are giving incorrect data.  Rather than simply estimate that, for example, the sonars 

are wrong 50% of the time, the MURIEL method incorporates algorithms for 

dynamically estimating the fitness of a sonar reading.  Secondly, it merges the 

readings from multiple positions, or poses, to gain more independent information 

about a particular cell.  This means that if, for example, a robot is sitting in a single 

position and takes 100 readings, only the first reading is counted since all following 

readings tell us nothing new about the environment since they are merely repeating 

what the original reading claimed, or at least something very close to it.  The 

MURIEL method can recall, for each cell in the map, what position the robot was in 

when it changed the value of that cell.  If the current reading is from a position the 

robot has already used to change that cell, the reading is discarded. 

 

2.8.3.1 Previous Work on Fusing Multiple Sensor Readings 

There are two broad categories for fusing multiple sensor readings for map-making: 

target tracking and occupancy grid models.  Target tracking involves modelling one or 

more features, and estimating their position at each new sensor reading.  This work 

uses Kalman filters, which is a computational algorithm that processes measurements 

to deduce an optimum estimate of the past, present, or future state of a linear system 

by using a time sequence of measurements of the system behaviour, plus a statistical 

model that characterizes the system and measurement errors, plus initial condition 

information.  Target tracking is appropriate when there are few landmarks and their 

interaction with the sensors is well known.  A key issue in this field is the data-



 63 

association problem.  That is, how to identify the target that a given sensor reading is 

associated with.  One possible solution is to use a Bayesian tree approach to 

processing multiple hypotheses about data associations. 

 

Target tracking methods are inappropriate in situations where it is important to 

determine the complete surface geometry of the environment.  In these cases, 

occupancy grids provide a better solution.  Similar to target detection, the primary 

problem of occupancy grids is data association, i.e. does a sensor reading give 

information about surfaces in a particular area?  The geometric uncertainty of the 

beam width and multiple reflections of the beams energy are the main causes of error. 

Elfes [20] compensated for these errors by using a Bayesian update with gaussian 

noise with a very large variance. 

 

Although Elfes’ work succeeded in improving occupancy grid models, some 

problems remain unsolved.  First, modelling multiple reflections as gaussian 

distributed is not realistic, and second, the use of a gaussian distributing implies an 

averaging model, in which every reading is assumed to be corrupted by the same 

noise.  Finally, enumerating and updating probabilities for all possible environmental 

situations is computationally prohibitive, simplifying independence assumptions are 

made to reduce the computational complexity. 

 

The MURIEL method addresses the problems above by introducing a multiple target 

detection model, which assumes a random (unbiased) distribution of surfaces in the 

environment.  To solve the data association problem, the method asks under what 

conditions the model gives the assumed random distribution of surfaces. This way, 

sensor readings are only treated as independent if they come from different poses. 

 

2.8.3.2 Probabilistic Sensor Models 

A sensor model describes how a sensor interacts with the environment.  An ideal 

sensor would give perfect information about the properties it reports on, but this is 

seldom if ever the case.  The uncertainty of sensor readings can be expressed using 

probabilistic methods, specifically Bayes rule: 



 64 

 ( ) ( ) ( )
( )BP

AP
ABPBAP || =  

where P(A) and P(B) are the prior probabilities of A and B.  The sensor model is the 

quantity P(B | A), the probability of getting the measurement B given that the 

environment has property A.  As it can be inconvenient to determine P (B), the 

equation can be rewritten as: 

( ) ( ) ( )
( ) ( ) ( ) ( )APABPAPABP

APABP
BAP

||

|
|

+
=  

Change of odds is often a much more intuitive quantity to deal with than the absolute 

probability, because it factors out the prior probabilities in a nice way.  There odds of 

an event occurring is there probability of it occurring divided by the probability of it 

not occurring: 

 ( ) ( )
( )AP

AP
AO =  

The likelihood odds can be represented by  

 log O(A | B) = log λ(B | A) + log O(A) 

where λ(B | A) is the likelihood ratio of B given A.  This ratio can be calculated with 

the formula: 

 ( ) ( )
( )i

i

i
CDrP

CDrP
CDr

=

=
==λ  

where ( )iCDrP =  is the probability of the range reading r being equal to distance D 

given that the cell Ci is occupied, and ( )CDrP =  is the probability of the range being 

a distance D given that the cell Ci is unoccupied.  Both of these figures can be 

calculated theoretically using the following two points of information on the 

properties of sonars [33]: 

1. The range error becomes larger as the range increases 

2. The probability of an obstacle being detected becomes smaller as the range 

increases. 

 

Earlier sensor models such as Elfes’ 92 [20] model made the simplifying assumption 

that a single target caused the sonar reflection returned to the emitter, and that no 

other target can exist.  Occupancy values are updated to reflect this, with points both 

in front of and behind the obstacle having their occupancy values lowered.  However, 



 65 

this is not always the case, and rather than a single target being present, we observe 

that the echo we receive is merely the first to come back, with later echoes being 

ignored by the emitter.  This must be accounted for in the sonar model, as the more 

refined and accurate our understanding of the operation of the sensors the more 

accurate the world model derived from them will be.  

 

2.8.3.3 The single target model 

The full two-dimensional multi-target model is quite complex, so we’ll begin with the 

basics, and build it up slowly.  The single target mathematical model for obstacle 

detection in the 1-D case, not taking into account the angle of the sonar beam, is: 

 ( ) ( )
( )

( ) ( )22
2

1
2

ii rrD

i

i

i e
r

r
CDrp

δ

δπ

α −−==  

where ( )irα  is the attenuation of detection with distance, ( )irδ  is the range variance, 

which increases with distance, and ri is the distance of the target from the sonar.  To 

calculate the range variance, Konolige uses a value of ( ) r..r 015001+=δ , which 

means that there is a fixed error of 1cm, plus 1.5% of the range.  This was calculated 

for Polaroid sonar sensors, and may have to re-optimised for other models.  To 

calculate the detection attenuation, the formula ( ) ( )( )r.,min.r 2501160 −=α  was used.   

 

The 0.6 means that objects are sometimes not detected, even at close range.  This 

model attenuates linearly with distance, and has a limit of 4 metres for detection.  If a 

shorter maximum distance is required, the formula can be altered to accomplish this. 

 

The formula above for ( )iCDrp =1  looks complicated at first glance, but it is merely 

a modified version of the formula for the standard normal distribution curve, the most 

common distribution used in statistics.  A continuous random variable that is normally 

distributed, when plotted on a graph, forms a curve whose area between it an the x-

axis is equal to one.  The formula for the normal distribution is as follows: 

( ) ( ) ( ) ∞<<∞−= −− xe;;xf x 22
2

2

1 σµ

σπ
σµ  

where µ is the mean of the curve (i.e. the value of X for which the curve has its largest 

Y value), and σ is the standard deviation from the mean.  σ governs the distance from 



 66 

the mean µ to the inflection points of the curve (i.e. the value at which the curve stops 

curving downwards and starts curving upwards), which in essence governs how tall 

and how wide the bell curve is.  Konolige adapted this formula, replacing σ with 

( )irδ , µ with ir , x with D (the distance measured by the sonar) and multiplying the 

result by ( )irα . 

 

Unfortunately, as mentioned previously, 

and as can be seen in Fig 2.13, the 

single-target model treats points both in 

front of and behind the obstacle the 

same.  This is clearly not accurate, as no 

information regarding the area behind 

the obstacle should be derived from a 

range reading due to the fact that it 

cannot affect the outcome of the reading.  

For this reason the multiple-target model 

was developed. 

 

2.8.3.4 The multiple target model in one dimension 

The multiple target model does not make the simplifying assumption that only one 

target can cause a reflection of the sonar beam.  While only one reading per clock 

cycle is actually processed, the sensor could possibly receive other readings.  It is 

assumed that these occupied surfaces have a random distribution, since there is no 

prior information about them.  The only effect of this assumption is to add a small 

constant, F, to the probability density ( )iCDrp = , where F is a estimation of the 

probability of detecting random other targets. 

 ( ) ( )
( )

( ) ( )
Fe

r

r
CDrp ii rrD

i

i

im +== −− 22
2

1
2

δ

δπ

α
 

  

This causes the likelihood ratio to be changed to  

 ( ) ( )
F

CDrp
CDr

im

im

=
== 1

1λ  

 

Fig 2.13 On-axis log likelihood ratio in the 

single target model for a range reading of 2 

metres. 

 



 67 

where once again, the target is distance r from the sensor, α(ri) is the attenuation with 

distance, and δ(ri) is the range variance.  The result of placing the extra term in the 

formula is that the log likelihood ratio becomes 1 (no change) everywhere except near 

the range reading, with the freespace hypothesis (log λ <0) disappearing.  This is 

because our assumption means that although there is an object at the current range 

reading, we are not ruling out there being an obstacle anywhere else.  However, it is  

known that the sensor reading being processed is the first received by the emitter, and  

this must be reflected in the model.  To do this, we conclude that if this is the first 

reading, no reading of a distance less than r has been received.  Therefore multiply 

together the probability of getting a range reading at r, ( )im CDrp =1  and the 

probability of getting no reading less than r, ( )im CDrp </1 .  The new likelihood ratio, 

( )im CD@r1λ , is then written as: 

 ( ) ( ) ( )
( ) ( )imim

imim

im
CDrpCDrp

CDrpCDrp
CDr

</=

</=
=

11

11

1 @λ  

To calculate ( )im CDrp </1 , the probability density function is integrated up to 

distance D, and subtracted it from 1: 

 ( ) ( )dxQxrpQDrp
D

mm ∫ =−=</
0

11 1  

with Q = Ci or iC . 

 

Fig 2.14 On axis log likelihood ratio for sonar range readings at 1, 2 

and 3 metres using the multiple target model.  The Y axis value is 

used to update the cell in the map. 

 



 68 

An advantage to using the normal distribution becomes apparent when integrating the 

above function.  Rather than having to laboriously sum all the values of the cells less 

than a given distance from the sonar in the sonar beam, the standard normal 

distribution has been tabulated, and can be used to calculate the integrated value for 

any normal distribution.  Using this method, calculating ( )im CDrp </1
  is reduced to 

doing a lookup in a table of values, as well as a multiplication and subtraction to 

convert the value from the standard normal distribution to the normal distribution 

required using the formula: 

 
σ

µ−
=
X

Z  

where if X has a normal distribution with mean of µ and a standard deviation of σ, the 

Z is the equivalent standard normal variable. 

 

2.8.3.5 The multiple target model in two dimensions 

Up until now, we have been dealing with just the one dimensional case, not taking 

into account the width of the beam.  To correct this, we simply add in a gaussian 

decay, parameterised by the angle, from the central beam of the sensor.  The 

probability of obstacle detection in two dimensions then becomes: 

 ( ) ( )
( )

( ) ( )
Fee

r

r
CDrp iii rrD

i

i

im +== −−− 2222 22

2
2

δσθ

σπδ
α

 

with θ being the angular deviation of the target from the central beam, and σ being 

half the beam width, e.g. σ= 15
o
 for a beam width of 30

o
.  All the mathematics from 

the one dimensional model are also valid here, with ( )QDrp m </2  becoming 

( ) ( ) dxdQxrpQDrp
D

mm θ
π

π∫ ∫− =−=</
0

22 1  

with Q being either C or C . 

 

While ( )im CDrp =2  seems quite complex, it is possible to simplify it somewhat by 

noting that it is essentially the amalgamation of two normal distribution formulae, the 

first modelling the probability of occupancy of a cell based on the distance of the cell 

from the sonar range measurement, and the second modelling the distance of the cell 

from the centre of the beam.  The formula can be split into separate parts as follows: 



 69 

 ( ) ( )
( )

( ) ( ) ( )
Fee

r
rCDrp iii rrD

i

iim +

















== −−−− 2222

202

2
2

1

2

1 σθδ

σπδπ
α  

When this is compared to the formula for the normal distribution 

 ( ) ( )22
2

2

1 σµ

σπ
−− xe  

it can be seen that the first set of brackets is simply the normal distribution with 

parameters ri for the mean, ( )irδ  for the standard deviation, and the sonar range 

measurement D instead of x.  The second set of brackets is also the normal 

distribution with a mean of zero, half the width of the sonar beam, σ, as the standard 

deviation, and the angle between the cell, the sonar emitter and the central beam of the 

sonar wave θ as inserted in place of x. 

 

Integrating this formula, as explained earlier, can be done by simply looking up the 

tabulated values for the standard normal distribution and converting them for the 

given µ and σ.  The doubly integrated formula:  

 ( )
( )

( ) ( ) ( )∫ ∫−
−−−− +

















D
rrD

i

i Fee
r

r iii

0

202 2222

2

1

2

1π

π

σθδ

σπδπ
α  

can be separated out as follows: 

 ( )
( )

( ) ( ) ( )
Fee

r
r iii

D
rrD

i

i +

















∫∫ −

−−−− π

π

σθδ

σπδπ
α

2222
20

0

2

2

1

2

1
 

since the first integral will only affect variables to do with distance (ri, D, ( )irδ ), and 

the second integral only affects variables to do with angle from the centre of the beam 

i.e. θ.  The function ( )irα  could be left in the first integral, but it would make no 

difference to the result, and for the table lookup to work the formula must take the 

form of a normal distribution.  Therefore, ( )irα  is taken outside both integrals.  The 

value F is placed outside both integrals also, and for the same reason as ( )irα  - it 

would make no difference to the overall result, but would cause either formula to not 

take the form of a normal distribution and it would then be impossible to use the 

tabulated lookup. 

 

 



 70 

2.8.3.6 Specular and Diffuse Models 

Specular reflection, as described in section 2.9.3, occurs when a smooth surface 

reflects the sensors energy coherently.  If the surface is at an oblique angle to the 

sensor the emitted energy will either give no reading or an incorrect one.  Whatever 

the case, it is erroneous to treat the reading as valid.  It is therefore desirable to be able 

to detect and ignore incorrect readings.  As in all our dealings with sonar sensors, it is 

only possible to estimate a probability that a reading is specular.  We can say 

that ( )Sp  is the probability that a reading is specular, and that ( )Sp  is the probability 

of it not being specular, i.e. that it is diffuse.  However, since specular and diffuse 

readings are mutually exclusive, ( ) ( )SpSp −= 1 . 

 

So now it can be said that the information to be extracted from any reading is equal to 

the probability of detection, ( )im CDrp =2 , multiplied by the probability of a reading 

being diffuse, ( )Sp−1 , plus the amount of information given by a specular reading 

multiplied by the probability of the reading being specular.  Since a specular reading 

provides no information about the environment, the information provided is  

( ) ( ) FCDrpCDrp isis ==== 22  

Therefore, our new update formula for a sonar reading is: 

 ( ) ( ) ( )( ) ( ) ( )SPCDrpSPCDrpCDrp isimic =+−=== 22 1  

 

The question must now be asked, what value does ( )SP  take?  While it is possible to 

give it a fixed value by tuning the sensor model for the environment, this does not 

take into account the local environment, with some areas being more likely to create 

specular reflections than others.  One way of deciding if a sonar reading is specular is 

to use Drumheller’s [19] sonar penetration condition which states: the freespace 

hypothesis of a sonar reading should not impinge on a high-confidence surface i.e. if 

we are sufficiently confident that a cell is occupied we should not believe any reading 

that claims that the cell is empty.  If prior information regarding the environment 

exists, it can be used to derive a probability of specularity. 

 



 71 

The MURIEL method uses the following algorithm to compute the probability of 

specularity, ( )SP .  The basic idea is that if sufficient readings are received stating that 

the cell is occupied, it can be assumed that readings claiming it to be empty are 

specular reflections.  This is implemented by first summing up all the log λ surface 

readings at the cell.  This figure is called log λs.  Once this number passes a certain 

threshold, Cs, ( ) 1=SP .  If log λs = 0, ( ) 0=SP .  If log λs is in between zero and Cs, 

( )SP  is calculated by linear interpolation. 

 

An advantage to this approach is that it is quick to calculate, and gives reasonably 

good results.  A disadvantage to it is that it relies on prior information from multiple 

different angles to determine the specularity of a reading, and this may not always be 

available. For example, when exploring a corridor for the first time, it is usually only 

possible to get a few readings of a wall as it is passed by the robot, as it is not 

practical to rotate the robot every few seconds to compare sensor readings.  This is 

especially apparent when the robot is exhibiting a wall-following behaviour, as is 

common.  Multiple readings from diagonal sensors will accumulate incorrect specular 

readings as the robot approaches a particular wall segment, while relatively few 

correct readings will be received by side sensors, maybe even just a single correct 

reading, as the robot passes the wall segment.  A possible solution to this is to set the 

threshold Cs, very low, so very few surface readings will negate many freespace 

readings.  This could lead to many cells being marked occupied that are in fact empty, 

however.  See chapters 4 and 6, for implementations and results of testing this theory 

respectively 

 

Another problem is that all freespace readings that impinge on a single cell with a 

value of log λs > Cs have the same probability of specularity.  Obviously this is not 

accurate, with a freespace reading that covers many occupied cells being more likely 

to be incorrect than one that includes just one occupied cell.  It may be possible to use 

a modified function of ( )SP  that takes into account the percentage of occupied cells 

in relation to the total number of cells covered by the beam.   

 

 



 72 

2.8.3.7 Independent Evidence – Ignoring redundant readings 

As stated earlier, a simplifying assumption of conditional independence has been 

made that states that each cell in a map has no effect on another cell, and that each 

reading is independent of all other readings.  While this is not entirely accurate, 

attempting to model a non-independent system is an almost impossible task due to the 

exponential number of variables it is necessary to keep track of.  Using the idea of 

conditional independence, we build up a map by taking sensor readings from many 

different positions and angles.  However, take the case when the robot is stationary 

and taking in multiple readings in a static environment.  With each reading taken, 

more information is added to the map, reinforcing the set of previous range readings 

that have not changed.  The problem with this is that no new information is really 

being added to the map after the first reading.  Each successive reading is clearly not 

independent of the one that came before – it is exactly the same.  If a mathematical 

model is used that assumes independence in respect to the readings, we will have to 

use some method of identify the redundant readings that contribute nothing new to the 

map, in order to ensure that the information is truly independent. 

 

Konolige’s MURIEL method uses a map which uses a dual representation – each cell 

represents the both the occupancy of the area and the pose of readings that have 

effected that cell.  This is accomplished by using what he calls pose buckets, which 

essentially store a Boolean variable stating whether a reading from a given distance 

and angle has affected a particular cell.  This Boolean is set to true when the first 

reading from a pose is received, and all following readings from that pose for this cell 

are discarded, as they merely duplicate information already in the model.   

 

This method addresses the problem mentioned above, and ensures that all information 

included in the map is independent.  However, there is a problem that Konolige 

neglected, and which needs to be addressed. It is that some useful information is 

possibly being discarded.  This method is also unable to cope with dynamic 

environments.  Take for example, if the robot detects a chair in a certain position, and 

builds up a sufficiently high confidence that it exists.  If that chair is removed, the 

system will ignore all readings that report this fact.  Clearly this is not good enough.  



 73 

New information must be able to be dissimilar with earlier readings without being 

discarded.  

 

One possible way of doing this is to bias the system towards believing the sensors 

when they claim that a cell previously thought to be occupied was in fact empty.  This 

way, if  a surface reading was originally received for a cell C from pose P, and later a 

freespace reading for C from P is returned, the likelihood of occupancy is reduced by 

an amount equal to the contribution made by the previous surface reading to 

increasing the likelihood of occupancy.  The freespace likelihood is increased 

accordingly.  This can be seen as analogous to a blind man feeling his way with a 

stick.  If he taps an obstacle when in one position, walks somewhere else, then later 

returns to the same position and no longer feels the obstacle with his stick, it is 

reasonable to assume that although the obstacle was there, it is not any more.  This is 

of course conditional on his ability to return to the same position and orientation, but 

since Konolige’s paper doesn’t deal with localisation, we can assume that a separate 

module is taking care of that function.  See Chapter 4 for details of the 

implementation of this technique in the K97 module, and Chapter 6 for the results of 

experiments and comparisons with other techniques, as well as with the original 

MURIEL method. 

 

2.8.3.8 The MURIEL algorithm 

The incremental method used by the MURIEL algorithm, is as follows: 

1. Collect data.  Check each reading against the pose bucket to see if it is 

duplicating any information.  Two sets of pose buckets are kept for each cell, 

one for surface readings, and one for freespace readings.  If the reading is not 

duplicating previous information, the pose bucket for that pose and that cell is 

marked true.   

2. Update the likelihood ratios sλ and fλ .  When a new surface reading comes in, 

calculate the new likelihood ratio using the method described earlier for 

calculating ( )im CDrp =2 , and multiply it with the old one, .sλ  Similarly, 

when a new freespace reading comes in, compute the log likelihood of 



 74 

freespace at the cell, fλlog , using the formula for ( )ic CDrp =  given earlier, 

and multiply it with the old ratio fλ . 

3. Calculate the probability of specularity, ( )SP . 

4. The odds of cell occupancy are calculated using a simple addition and 

multiplication, ( )( ) ( )( )SPSPfsT +−+= 1logloglog λλλ . 

This method of updating the log likelihoods by multiplication is used for efficiency, 

and is not as accurate as completely recalculating sλ and fλ  at each clock cycle.  As 

such it is an approximation, but the gain in performance is considerable, and an 

acceptable trade-off with accuracy. 

 

2.8.3.9 Issues with MURIEL algorithm  

One of the most significant problems with the MURIEL method is the way in which it 

calculates the probability of specularity of a sonar reading, ( )SP .  For a single sonar 

reading, different cells in the beam will have different values for ( )SP  depending on 

how many correct readings have accumulated at each cell.  This is unavoidable and is 

in itself is not a problem.  However, if, for example, cell ci claims the probability of 

specularity to be 1, and cell cj claims ( ) 0=SP , ci will be updated as if ( ) 1=SP  and 

cj will be updated as if ( ) 0=SP .  The deficiency lies in the fact that if one cell is 

very confident of the specularity of a sonar reading, then this should reflect on all the 

cells in the sonar beam, and not just that cell alone.  For this reason, better results can 

be achieved by taking the maximum ( )SP  of all cells in the sonar beam and applying 

it to all cells for that particular reading.  This has been implemented in the K97mod 

system discussed in Chapter 4, and the original MURIEL method has been 

implemented in the K97 system, also discussed in Chapter 4. 

 

A second weakness of the MURIEL method is that, when estimating the probability 

of specularity of a sonar reading, all sonar readings are treated as completely 

independent of all other readings, even readings from other sonar sensors in a single 

scan.  They are not independent however, and the readings from one sonar sensor can 

be use to validate or invalidate data from other sonar sensors, especially data taken 

from multiple sonar sensors at the same time.  The method called Feature Prediction 



 75 

was developed during this research to take advantage of that very fact, and is 

presented in chapter three. 

 

A third problem with the 

MURIEL method is the use of 

pose buckets to eliminate 

redundant, or duplicate, readings.  

The way in which Konolige 

advocates using pose buckets 

means that each cell can be 

updated from a certain number of 

angles, and from a certain 

number of positions.  However, 

when the robot is stationary 

specular readings can fluctuate 

widely with readings of many 

different lengths, giving a result as in Fig 2.15.  A possible solution to this is to use 

pose buckets to allow just one set of readings from a given robot pose, as opposed to 

allowing multiple different readings of different lengths from a single pose to update 

far too many cells. 

 

A fourth issue with the MURIEL method is the use to which it puts the probability of 

specularity.  When a sonar range reading is given a high probability of specularity, the 

theory states that the effect of that reading upon the map should be reduced.  However 

the formulae developed for this purpose by Konolige only reduce the effect of the 

freespace segment of the beam. 

 ( )( ) ( )( )SPSPlogloglog fsT +−+= 1λλλ  

In the above formula for combining the log of the occupied likelihood value of the 

map log λs with the log of the freespace likelihood value log λf, the probability of 

specularity P(S) is only combined with the freespace likelihood.  The log likelihood of 

occupancy log λs is incorporated directly, untouched.  An improved version of this 

formula is presented in chapter four, where the K97mod map building system builds 

 

Fig 2.15 Pose buckets allow multiple specular 

readings of different lengths accumulate in highly 

specular areas, such as convex corners. 



 76 

on the basic MURIEL method to make the probability of specularity reduce both the 

freespace and occupied regions update values.  

 

A final issue with the MURIEL method is its large storage requirements.  For large 

complex maps, pose buckets can become extremely demanding of memory resources, 

as they generally require around 180 times as much storage as a single map.  Some 

careful programming using quad trees can alleviate this problem for relatively 

simplistic maps, but in a complex map the pose buckets can require many hundreds of 

megabytes of storage.  There is also the issue that the MURIEL method requires the 

use of three maps, rather than a single map as in other Bayesian based methods [42].  

This is necessary because to calculate the probability of specularity using the dynamic 

mixture model P(S), the cumulative surface readings must be stored separately from 

the freespace readings.  Each of these must therefore be stored in separate maps, with 

the final generated map being an amalgamation of the two. 

 

2.9 Alternative Approaches To Map Building 

Many different approaches to map building have been developed and tested by 

researchers, each with their merits and their drawbacks.  Theoretical evaluations of 

some of the more prominent mapping methods are undertaken in this section.  The 

methods are as follows: 

• Alberto Elfes 1992 paper Dynamic Control of Robot Perception Using Multi-

Property Inference Grids [20].  This presented a methodology for the use of 

grids to store considerably more information about the environment in 

addition to the occupancy value of a cell.  It illustrates some problems with the 

scalability of occupancy grids. 

• James Crowley’s 1985 paper Navigation for an Intelligent Mobile Robot [15], 

which used both a local grid representation of the world and a global map 

made up of line segments.  This method of representing the environment using 

line segments in both a local and global model influenced the design of the 

Feature Prediction algorithm presented in chapter three. 

• Sebastian Thrun’s three papers Learning Maps for Indoor Mobile Robot 

Navigation [58], Exploration and Model Building in Mobile Robot Domains 

[57], and Map Learning and High Speed Navigation in Rhino [59].  These 



 77 

papers introduced a method of automatically learning a sonar model using 

neural nets, and for detecting noisy sonar readings using what he called a 

confidence network.  The confidence network is an method for assigning 

confidence measures to sonar readings, using a trained neural net rather than 

the Feature Prediction algorithm. 

 

While this thesis is concerned for the most part with grid based maps, some 

discussion of topological maps is in order, in particular how they can be integrated 

with grid maps for path planning.  This is dealt with in section 2.10. 

 

The chapter finishes with a discussion of blurring maps, and its merits to map 

building.  

 

2.9.1 Alberto Elfes – Dynamic Control of Robot Perception Using Multi-Property 

Inference Grids 

2.9.1.1 Inference Grids – Taking Occupancy Grids to the Next Level 

Elfes followed up his development of a framework based around the Occupancy Grid 

model by extending the capabilities of the Occupancy Grid.  While the original model 

stored just one piece of information, the probability of occupancy of a set of cells, his 

new model, termed Inference Grids [20], could contain may different types of 

information about a mapped area.   

 

An Inference Grid is a multi-property Markov Random Field defined  over a discrete 

spatial lattice, or, put simply, a grid that can hold many different types of information 

at the same time.  A Markov Random Field is any representation in which each 

individual piece of information, in this case each cell, contains within it all the 

information required to make a decision based on it, with no information needed 

regarding its past values or the values of the cells around it.  They are called Inference 

Grids due to the way that the information stored within a cell can be inferred from it’s 

occupancy state.  Some properties that may be estimated include: 

• Reachability – whether it is possible to travel to cell A from any other cell in 

the map, B. 



 78 

• Observability – whether it is possible to see cell A from any other cell in the 

map, B. 

• Reflectance – whether or not a cell represents part of a surface that is 

reflective, like a mirror. 

• Colour  

• Traversability – whether or not it is possible for the robot to cross a given 

area. 

Which properties we choose to calculate depends on the task at hand and the type of 

sensors being used e.g. sonars, vision, infra-red etc.  For example, sonars are unable to 

detect the colour of an object. 

 

New methods were also developed to use the Inference Grids to guide the perceptual 

activities of the robot.  The basic theory is that the robot should perform the action 

which provides the most information, depending on what information is required.  

The first step in this is to compute the entropy (lack of information) of a cell: 

( ) ( )[ ] ( )[ ]∑−=
is

ii MCsPMCsPCE |log|  

where si(C) is the occupancy value of the cell, and M is the occupancy grid.  When the 

entropy for each cell has been computed, the average entropy for an area, W, is 

attainable.  We can then calculate the information provided by a sensing action α at 

time step k: 

 ( ) ( ) ( )( )WEWEI kkk 1−−−=∆ α  

which is simply the reduction in entropy of an area that this sensing action causes.  By 

identifying the area we are interested in, called the Locus of Interest, it is possible to 

identify the optimal sensing action to take by maximising the information gain for the 

‘interesting’ cells.  This is done by calculating the utility of each action αi, U(αi | π), 

given our current knowledge π. 

 ( ) ( ) ( )∫∆ ∆∆∆=
I

i IdiIPIUU παππα ,|||  

This is the integral of the utility of a piece of information multiplied by the probability 

of having such a change in information ( )πα ,IP i∆  given the action α and the current 

state of the world π. 

 



 79 

The maximal action is then chosen as the action with the most utility, which is the 

most useful. 

 ( )
i
iU
α

παα |maxˆ =  

This extension of the occupancy grid is a large step forward from the original idea of 

Occupancy grids proposed in [46].  This paper shows that the idea of an Occupancy 

Grid, or it’s extended form of Inference Grids, is more than merely being a useful 

model to assist with path planning and obstacle avoidance to be built using sonar 

emitters. Once a task can be expressed in terms of an area of a map that we are 

interested in for the sake of exploring, finding, and/or manipulating, the Inference 

Grid can be used to not only guide what motions the robot should make, but also the 

best sensor(s) to use for that purpose.  For example, if the task at hand is to follow a 

wall, the Inference Grid can be used in determining that sonar or laser range finders 

would be more suitable than vision input. 

 

2.9.1.2 Issues with Inference Grids  

Despite the advantages of Inference Grids, there are a number of drawbacks to using 

them.  Firstly, the space requirements, and the complexity of managing and 

coordinating the data.  Whereas Occupancy Grids only store three maps of an 

environment, Inference Grids store many different representations of the environment.  

Given the memory capacity of today’s computers, this is not as much of a problem as 

it was when the paper was published, but the real problem becomes apparent when 

attempting to keep all the different representations of the environment current with 

each other. 

 

Because one representation of the world is dependent on others, for example the 

reachability of a region must be updated whenever its occupancy is updated, the task 

of ensuring that the many different models agree with each other quickly becomes 

intractable.  Whereas Elfes claims that there are many more uses to which Inference 

Grids can be put, as each extra layer is added to the system, the computational 

resources grows exponentially. 

 



 80 

A second problem comes from the fact that sensors can be very noisy, causing errors 

in the model.  Because one model of the environment depends on others, an error to 

one model can, in the worst case scenario, be propagated to all other models, reducing 

their usefulness.  No attempt to address this problem is proposed in the paper. 

 

Finally, no real experimental results are given to prove the validity of the approach, 

and no quantitive or comparative analysis is performed on maps generated using 

Inference Grids.  Without this it is difficult to agree with the author that the effort and 

complexity of Inference Grids is either feasible or necessary in order to build accurate 

maps of the robot’s environment. 

 

2.9.2 James Crowley – Navigation for an Intelligent Mobile Robot 

Around the same time that Moravec and Elfes released their High Resolution Maps 

[46] paper, James Crowley was proposing a different method of representing the state 

of the world, or rather, two different methods.  His system kept two different types of 

models of the environment, a Cartesian based model akin to occupancy grids called 

the sensor model, and two line-segment based models called the global model and the 

composite local model. 

 

The sensor model is a Cartesian abstraction of the range data, where some two-

dimensional coordinates are marked as occupied, and others as empty.  It is not a 

global system, and has a horizon only as distant as the furthest possible sonar range 

reading.  Thus it represents only the robots local environment, what the robot can see 

at that moment in time.  The information contained in this model is converted into a 

set of line segments, or line equations, using a recursive line fitting algorithm, and 

then added to the composite local model.   

 

The recursive line fitting algorithm is similar to many others that have been used in 

the past to identify line segments in images.  First points are grouped together where 

they have the same or similar value and where the distance between them does not fall 

outside a given tolerance.  This tolerance is based on the maximum distance 

measurable by the sensors and the detail of the map.  Next a line is drawn between the 

two endpoints (the two farthest away from each other) in the collection of points, 

using the line equation: 



 81 

 0=++ CByAx  

A useful property of the line equation is that if we normalise A and B so that the sum 

of their squares is one and we then test the new equation with any point (x,y) we can 

calculate the perpendicular distance from that point to the original line.  This method 

is applied to each of the points in the collection, and the point with the greatest 

perpendicular distance from the original line is identified.  If this distance is less than 

a given tolerance then the original line is accepted.  If it is greater than the tolerance 

however, then the original line is split in to two with (x,y) being the joining point of  

 the two new lines, as in Fig 2.16.  This process is recursively applied until the 

perpendicular distance of all points to their nearest line is within the tolerance. 

 

 

The composite local model is the heart of 

Crowley’s system. As can be seen in Fig 2.17, 

all sensor information is filtered through it 

before being used to plan paths, update the 

global model, generate a network of 

recognisable places.  It is generated from the 

local information taken from the various 

sensor models.  We say various because, as 

the word composite implies, it is not limited to 

just a sonar model, but can incorporate any 

number of different models, such as touch 

sensors and infrared.  Line segments from the 

sensor models are matched against line 

segments already in the composite model to 

find which segments they most closely 

correspond to.  This is used to update errors in 

the robots position, and also to reinforce the 

objects that were previously detected.  If a segment is added to the composite model, 

but is not reinforced for a set number of cycles, it is removed from the model as it is 

assumed to be a dynamic object, such as a person.  Note that this is not a probability-

based model, it more of a heuristic derived from experimentation.  

 

Fig 2.16 Recursive line fitting algorithm 

used in Crowley's work. 



 82 

The global model is a pre-learned set of line segments, similar to the composite 

model, and is generated in a special learning mode.  It is used primarily for global 

path planning and for developing what Crowley calls a network of places, which is a 

set of open spaces connected by legal highways, or valid straight line paths.  The 

global model is also used to update the composite local model, providing it with valid 

line segments to match its detected segments against. 

 

One of the problems with the approach taken by Crowley is that much of the system 

he developed was based on experimentation, trial and error, and what “seemed to 

work”.  This means that while it may work on his robot and in their test environment, 

it would probably not port well to another robot and environment without going 

through the whole process of recalibration again, a non-trivial process.  Also, since it 

is not based on a probabilistic architecture, i.e. the line segments do not have a 

probability associated with them to be raised or lowered, the update algorithms and 

segment removal strategies are not very mathematically robust.   

 

Fig 2.17 Crowley’s framework for intelligent navigation. 

 

A third problem with representing the world as a set of line equations is that, while it 

is possible in a two dimensional world, where a line equation is simple, in a three 

dimensional world the shape would be far more difficult to construct.  While this is 



 83 

possible, Crowley’s whole update and line decay method would have to be 

completely rethought.  As a result of these problems, Crowley’s method does not 

scale well to three dimensions, unlike the Occupancy Grid method where layer upon 

layer can simply be stacked on each other to create a three dimensional model. 

 

One advantage to representing the world as a set of line segments is that the 

orientation of the object is taken into account, and individual points are not assumed 

to be independent from each other.  This is useful when doing Markov localisation.  

When performing Markov localisation, one of the steps is to estimate the correct sonar 

range reading from a particular position and orientation, or pose, in order to compare 

it with the actual sonar reading the robot has received.  One simple, but naïve, method 

of doing this is to find an occupied grid inside the sonar cone which is closest to the 

emitter and assume that this obstacle would cause an echo to return to the sonar 

emitter.  The problem with this is that it ignores an inherent property of sonars, that 

the sonar sensor must be near to perpendicular to the obstacle in order to detect it.  If 

the angle from the perpendicular goes past a threshold, usually around 20
o
 – 30

o
 

depending on the emitter, the sonar will not correctly detect the obstacle.  This 

weakness must obviously be modelled as closely as possible if the localisation is to be 

in any way accurate.  If the orientation of the obstacle is known, better decisions can 

be made as to whether the part of it in question, an occupied grid cell, would cause the 

sonar to reflect back to its source and give a range reading, or whether it would reflect 

in another direction, giving incorrect data.  Crowley gives a simple recursive 

algorithm for fitting line segments to Cartesian points, but any one of a number of 

such algorithms are suitable for this purpose. 

 

Representing the world as a set of line segments is also useful in understanding the 

behaviour of the sonars.  The Feature Prediction algorithms for filtering out noisy 

sonar readings presented in chapter 3 make use this method of representing the world 

to decide when a sonar is giving correct information or not. 

 



 84 

2.9.3 Sebastian Thrun - Learning Maps for Indoor Mobile Robot Navigation, 

Exploration and Model Building in Mobile Robot Domains, and Map Learning 

and High Speed Navigation in Rhino 

2.9.3.1 A Probabilistic Model for Map Updating 

An alternate method of updating a metric map is proposed by Sebastian Thrun [58] 

using formulas derived from Bayes update rule. 

 ( ) ( ) ( )
( )BP

AP
ABPBAP || =  

This paper described a method of building a grid-based map by integrating multiple 

sensor readings over time using two neural nets.  A neural net was trained, using 

backpropagation, to interpret the readings from the sonars and map them to occupancy 

values for grid cells.  The network outputted a 1 if the cell was occupied and a 0 if it 

was not.  For seemingly erroneous readings, an output of ≈0.5 is generated to indicate 

lack of certainty.  This is then combined with the prior probability of occupancy using 

Bayes’ update rule to give a new value.  Using neural nets, as opposed to handcrafted 

methods, has two main advantages.  The first is that, if the environment changes 

drastically, the network can be quickly retrained.  The second is that multiple sensor 

readings are interpreted at the same time rather than treating each individual sonar 

reading as independent of the others, which can be useful in identifying erroneous 

readings.  The Feature Prediction algorithm presented in chapter 3 does something 

similar to this. 

 

For any single reading, we need to find Prob(occx,y|s
(t)
), which is the probability that 

the cell (x,y) is occupied given the sensor reading s at time t.  For a single snapshot of 

sonar range reading, Thrun trained a neural network through backpropagation to 

interpret these to give that very value, which is the range [0..1], with a value of 0.5 

representing a lack of knowledge about the cell.  This is in contrast to Moravec and 

Elfes grid, which contains values in the range [-1..1].  However, Elfes later developed 

a Bayesian model, and used a range of [0..1], since this has certain advantages when 

used with Bayes’ formula.  Once this value has been calculated it must be integrated 

with previous readings, for which he used the formula: 



 85 

( ) ( )( ) ( )
( )

( )( )
( )( )

( )
( )

1

1

1
1

11
11

−

=












 −

−−
+−= ∏

x,y

x,y
T

t
t

x,y

t

x,y

x,y

x,yT

x,y
occobPr

occobPr

soccobPr

soccobPr

occobPr

occobPr
,s,soccobPr K

 

where Prob(occx,y) is the prior probability of occupancy, which can be omitted if set 

equal to 0.5.  This formula can be derived [58] from Bayes formula using the 

conditional probability assumption, which states that Prob(s
(t)
|occx,y) is independent of  

Prob(s
(t-1)

|occx,y) i.e. that the probability of getting a sensor reading at a particular time 

given the current occupant value of a grid cell is not dependent on any previous sensor 

readings.  Bayes rule states that  

( ) ( )( )
( ) ( )( )

( ) ( ) ( )( )
( ) ( ) ( )( )

( ) ( )( )
( ) ( )( )11

11

1

1

1

1

−

−

¬¬
=

¬ T

x,y

T

x,y

T

x,y,

T

T

x,y,

T

T

x,y

T

x,y

,..,ssoccobPr

,..,ssoccobPr
*

,s,soccsobPr

,s,soccsobPr

,..,ssoccobPr

,..,ssoccobPr

K

K

 

which can be simplified down to the following formula using the conditional 

independence assumption.  

( )( )
( )( )

( ) ( )( )
( ) ( )( )11

11

−

−

¬¬
=

T

y,x

T

y,x

y,x

T

y,x

T

s,..,soccobPr

s,..,soccobPr
*

occsobPr

occsobPr
 

If we apply Bayes rule to the first term, this leaves us with 

 

( )( )
( )( )

( )
( )

( ) ( )( )
( ) ( )( )11

11

−

−

¬

¬

¬
=

T

x,y

T

x,y

x,y

x,y

T

x,y

T

x,y

,..,ssoccobPr

,..,ssoccobPr
*

occobPr

occobPr
*

soccobPr

soccobPr
 

and induction over T gives 

( )
( )

( )( )
( )( )

( )
( )∏

=

−

−
=

T

t x,y

x,y

t

x,y

t

x,y

x,y

x,y

occobPr

occobPr

soccobPr

soccobPr

occobPr-

occobPr

1

1

11
  

Finally, the update equation given originally is derived by solving the latter equation 

for ( ) ( )( )T

y,x s,,soccprob K
1  using the fact that  

 ( ) ( )( ) ( ) ( )( )T

y,x

T

y,x s,,soccprobs,,soccprob KK
11 1−=¬  

When a reading is received that indicates that a cell that is already believed to be 

occupied is occupied, then the occupancy value in increased.  When the reading 

claims that an unoccupied cell is unoccupied, the value is strengthened, bringing it 

closer to 0.  However, when a sonar reading disagrees with our current belief, then 

that belief is weakened, bringing the value closer to 0.5. 

 



 86 

2.9.3.2 Using Neural Nets to Interpret Sensor Readings 

The neural net mentioned above was a further development of an earlier system [57] 

designed by Thrun called COLUMBUS.  This system used two artificial neural 

networks to generalise real-world experiences.  One neural network interprets the 

sensors, and the other assesses the confidence of the readings.  Both networks encode 

the characteristics of the sensors and of the typical environments the robot may find 

itself in, such as a cluttered office environment.  

 

At every time step i, each neural net takes as inputs the sensor readings si, in this case 

24 sonar readings called sensations,  and the location of the robot xi.  The result is the 

expected reward ri, be it negative or positive, received when moving to a given 

position x.  This can be seen as being analogous to estimating the probability of 

occupancy of a cell.  The adaptive model, M, generalises from a finite set of examples 

{ }nir,s,x iii K1= , to new positions x in the domain: 

 { }( )x,nir,s,xMr iii K1==  

where r is the expected reward when moving to location x.  Essentially, when each 

new set of sonar readings is received, the sensor interpretation network, R, generates a 

local map of the area surrounding the robot.  The confidence estimation network, C, 

then estimates the validity of each of the sonar readings, and weakens the effect that  

sonars of low confidence value have on the local map.  This local map is then 

integrated with the global map. 

 

Both the sensor interpretation network, R, and the confidence estimation network, C 

were trained using back-propagation and supervised learning, and used one hidden 

layer with eight hidden units.  The network was trained in a known environment, with 

all obstacles giving a negative reward if the robot should collide with them.  This is 

clearly a limitation of the system, as there is always the danger that the network may 

not generalise well, or may not operate well in completely unknown environments.  

However, Thrun claims that this method of training was effective and successfully 

generalised to real-world office environments. 



 87 

24 Sonar  

values si 

displace-

ment ∆x 

predicted  

reward r i 

 

Fig 2.18 (a) Sensor Interpretation Network R. 

24 Sonar  

values si 

displace-

ment ∆x 

expected  

error ci 

confidence 

 –ln(ci) 

 

Fig 2.18 (b) Confidence Network C. 

 

The sensor interpretation network seen in Fig 2.18(a) maps a single position and set 

of readings to a reward at a given cell, xi.  It takes as inputs the sensor readings and 

the displacement of xi from the robot’s current position, x, and uses the distance 

measurements from the sonars to calculate an expected reward, or occupancy, of a 

given cell, xi. 

 

The reward function above suggests that the neural net gives a single reward, r, for 

each position and set of sensor readings.  This is not the case however.  Rather, it 

gives n reward estimates, one for each data point (si, xi).  This essentially means that 

the whole map is updated at every time step.  If this were all that occurred, it would 

also be the case that sonars who received no range reading would be propagated to 

infinity, and that points behind a wall would be updated as empty.  However, two 

techniques are employed to prevent these obvious errors. 

 

The first is the confidence network, C.  This is the second neural network that works 

in parallel with the sensor interpretation network, R.  It takes as its input the 24 sensor 

readings as well as the displacement of the cell in question from the robot’s current 



 88 

position.  The use of ∆x as an input removes the need for the network to model the 

global coordinate system, which significantly reduces the processing time required.  C 

was trained to measure the expected error of the reward function R.  Once R has been 

trained, an independent test set was used to train C to estimate the expected error 

between the reward estimated by R for position x, and the true state of occupancy of x.  

When the error is high, our confidence in the value given by R for the position x is 

low, and vice versa.  The readings from R, ri, are then weighted with their respective 

confidences, defined as –ln(ci), and combined using the formula: 

 ( )
( ) ( )

( )xM

i

ii

c

xr*xcln

xM

∑−
=  

where ( ) ( )∑−=
i

ixM xclnc , and is called the cumulative confidence at x.  This acts as 

a normaliser.  As it stands, this formula would update the whole map at each time-

step, which would have a negative impact on performance.  Rather than do this, Thrun 

observed that the  sonars on his robot had a maximum operating range of 10.5 feet, or 

about 3.5 metres. Therefore only the points on the map less than or equal to that 

distance from the robot were updated, which led to a noticeable improvement in 

efficiency. 

 

A weakness of the confidence net C  is that it has no memory of any previous 

confidence values generated for the sonars.  For example, if sonar number 1, which 

returned a long range reading, was given a low confidence value due to sonar 2’s 

short range reading, then it is fairly safe to assume that sonar 1’s reading was specular 

noise.  However, in the next time step, if sonar 2 receives a long range reading, due to 

a gap in a wall or noise for instance, sonar 1 will be given a high confidence value.  

The example in Step 6 of Chapter 3, Section 3.3 shows one occasion where this 

happens.  If sonar 1 was giving noisy readings in the previous time step, it is likely 

that it is also giving noisy readings in this time step.  Unfortunately the confidence 

network does not take this into account, and only uses the current sonar readings to 

calculate confidence values.  The Feature Prediction method presented in Chapter 3 

solves this problem by estimating the position and orientation of obstacles in the 

environment, and decaying them over time, rather than discarding them as the 

confidence network does. 



 89 

2.9.4 Biologically Inspired Models 

There are parallels that can be drawn between biological models and robots’ internal 

models.  Much research has gone into mimicking hippocampal cells in rats.  These are 

brain cells that have been observed to fire only when in a certain patch of an 

environment.  This is analogous to recognising a location.  It uses three different 

‘cues’ to recognise a location, which are arranged into a network.  It has been shown 

that certain animals can localise themselves in an environment using three 

recognisable locations, which can be thought of as a form of triangulation.  For 

example, a rat would see a familiar tree, a rock and a sewer, and know where it is and 

how to get home, or to the nearest food source.  However, the issue is not as clear as it 

may seem, as it has been shown that the neurons fire even in the dark, suggesting that 

odometry also has a part to play [54], and possibly smell and touch also.  This 

forming of a cognitive map from a number of small pieces eliminates the need for 

large-scale localisation, as the robot only needs to know its position within the current 

piece of the map. 

 

There are currently two principal hippocampal theories. The most influential theory, 

which establishes the hippocampus’ involvement in spatial learning and navigation, is 

the cognitive map theory by O'Keefe and Nadel [50]. This theory identifies the 

hippocampus in the brain as the region providing a neural representation of the rat's 

location within its environment. An alternative theory is the auto-associative memory 

theory formalised by Marr [39]. This theory holds that the hippocampus is a 

temporary memory device capable of storing and retrieving sequences of patterns. 

 

2.10 Constructing Topological Maps from Metric Maps 

Metric and topological maps each have their strengths and weaknesses.  Metric maps 

are relatively easy to generate, topological maps are not.  Metric path planning is 

slow, topological planning is fast.  Sebastian Thrun [59] et al advise combining the 

two in order to maximise the positive attributes of each.  These include the grid-based 

maps ease of construction and usefulness in self-localisation, and the speed at which it 

is possible to plan a path using a topological map allied with its compactness.   

This involves building a metric map, then converting it to a topological map.  Thrun 

[58] proposes a 5-step method of generating a topological map from a metric map.   



 90 

 

Firstly it must be decided which cells are occupied and which not.  This is done with 

thresholding, where all cells whose occupancy values are below a certain value are 

said to be empty, and all those above it are said to be occupied.   

 

Secondly a Voronoi diagram is generated.  This is the set of unoccupied points that 

have at least two equidistant basis points.  A basis point is the closest occupied cell to 

the unoccupied cell, see Fig 2.19.  In a simple corridor-like environment, this would 

lead to a line being drawn down the centre of the corridor.  A method for generating 

Voronoi diagrams is presented in Chapter 5. 

 

The next two steps are to identify critical points and critical lines.  A critical point 

must be part of the Voronoi graph, and there exists a distance ε > 0 for which the 

distance from all points to their basis points in an ε-neighbourhood of <x,y> is not 

smaller.   

 

 

 

 

 

 

 

 

 

  

Simply put, a critical point is a point in the set 

of cells in the Voronoi graph that is closer to 

an occupied point than all other cells in the 

graph that are within a given distance ε from 

it.  How small or large ε is depends on how 

detailed the topological map is required to be.  

The smaller ε is, the more nodes there will be 

Fig 2.19 Metric Graph with Voronoi 

Diagram  

Fig 2.20 Metric graph partitioned by 

Critical Points and Lines 

Fig 2.21 Graph generated of map area 



 91 

in the graph and vice versa.  Once the critical points are identified the critical lines are 

generated by simply joining the critical points with their basis points (see Fig 2.21). 

 

The critical lines divide the map into separate areas, each of which is then mapped to 

a node in a topological graph.  Each critical line is represented as an edge in the graph, 

acting as a transition from one node, or area, to another (see Fig 2.20). 

 

2.11 Constructing Topological Maps Using Potential Fields 

The potential field approach to mapping and path planning [30] uses the analogy of 

obstacles having electric charges, with the strength of the charge decreasing as the 

distance from the object increases.  At any given point, the electric charge, or 

potential, gives an indication as to the distance to the nearest obstacle, as well as its 

shape.  It can be visualised as a three dimensional map, with obstacles represented as 

flat-topped plateaus whose slopes descending at an angle from the plateau top to the 

free space surrounding the object, represented as valleys.  Where the potential fields 

of two obstacles intersect, the maximum potential is chosen, rather than the more 

obvious method of adding the two values.  This prevents small local maxima being 

created where there are no obstacles.   

 

The lowest points in the map, that is the valley floors, are referred to as Minimum 

Potential Valleys (MPVs).  These represent the Voronoi diagram, and can be followed 

using a path-planning algorithm.  However, since the number of points in a MPV is 

infinite, it is necessary to limit the computation by obtaining a piecewise linear 

approximation of it.  The MPV of a map is therefore represented as a graph whose 

nodes are certain points along the valley, and whose edges are straight-line segments 

connecting these nodes.   

 

This graph can be generated using the following algorithm[30].  The algorithm 

maintains three queues, the ancestor queue A, the father queue F, and the son queue S.  

Initially A and S are empty, and F contains the start and goal nodes.  The objective is 

to find the MPV branches exiting the start and goal nodes by recursively drawing 

spheres around the nodes on the F queue, and identifying the valleys within that 

sphere.   The first step is to draw the largest free sphere (the largest sphere that 



 92 

doesn’t intersect an obstacle) around each node in F.  Every grid reference within the 

sphere is a possible son of the node at the centre.   

 

All nodes above a certain threshold are deleted as they represent either a collision, or 

the unacceptable probability of one.  The grid point with the lowest potential is then 

chosen and appended to the S queue as a child.  An edge is created between this child 

node and its parent so that an infinite loop does not occur as a result of making the 

parent a child of its own child.  Another largest free sphere is drawn around this child 

node, and all grid points within it are deleted.  Next the process is repeated, with the 

selection of the point of lowest potential from the remaining grid points, appending it 

to the S queue etc.  This process continues until there are no more points in the 

original parent sphere.   

 

At this point the distance between each node in the child queue, S, and each node in F 

that is not its father is computed, and an edge is created between them if the distance 

is less than the distance from the son node to the nearest obstacle.  The entire F queue 

is then moved to the ancestor queue, A, the nodes in S are moved to F, and the whole 

process begins again.  The algorithm will terminate so long as the map area is 

bounded. 

 

2.12 Blurring 

A discrete metric map purports to offer independent information about the occupancy 

of particular grid cells, for example cell 1 has an occupancy probability of 0.8, while 

cell 2 has a value of 0.1.  Unfortunately, the unreliability of the sensors means that 

this assumption of independence is false, as one cell can in fact affect the value of 

another through incorrect range measurements, specular reflection etc.  A good 

example of this is a concave meeting of walls at a fairly acute angle.  While the walls 

near the corner might be detected, the robot will often not detect the corner itself due 

to the properties of the sonar beam.  One way of compensating for this is to assume 

that if all the cells around a location are occupied, there is a higher probability that the 

sensors are wrong to mark the cell as unoccupied.  This can be achieved by blurring 

the map. 

 



 93 

Blurring a map makes each cell represent not only the occupancy value of that 

particular space, but also represent the space surrounding it.  This leads to the first 

question: at what distance do cells stop affecting the value of the current cell?  In 

other words, what size kernel, or mask, do we want?  An example of a 5x5 kernel is 

given in Fig 2.21.The larger the kernel, the more cells affect the cell at the centre of 

the kernel.  There are two types of blurring commonly used in map building, box 

blurring and gaussian blurring.  These are discussed below. 

 

2.12.1 Box Blurring 

Box blurring is a method for averaging the value of a particular (X,Y) grid position 

with the values of the cells around it.  The size of the kernel and weight applied to the 

map values depends upon the problem it is being applied to.   

 

In terms of image processing, a signal, A, can be applied 

to another signal, O, to give an output signal, R.  The map 

being blurred can be seen as the original signal, O, while 

the applied signal, A, can be modelled as a mask or 

kernel, as in Fig 2.22.  The final map generated by 

applying the mask is analogous to R. 

  

 The box blurring method for a 5x5 kernel is carried out as follows: 

 For any grid cell (X,Y) (the shaded region in Fig 2.22), sum all the values of each 

grid cell in the square with a top left-hand-side of (X-2, Y+2), and bottom right-hand-

side of (X+2, Y-2).  Divide the total by 25, and assign that value to (X,Y).  Repeat 

this process either for the whole map, or for the chosen region of the map. 

( ) ∑∑
≤

−=

≤

−=
++

+
=

ki

ki

kj

kj

iyixyx s
k

c
d ,2,

12
 

Here [21], dx,y is the new map value, (2k+1) is the kernel size e.g. if the box is 5x5, k 

= 2. c  is the constant, in this case 1, and s is the source map.  

 

2.12.2 Optimising Box Blurring 

Unfortunately, there is a double sum per grid position, which is very processor 

intensive for a large map.  This can be overcome by employing a simple method [21] 

1 1 1 1 1 

1 1 1 1 1 

1 1 1 1 1 

1 1 1 1 1 

1 1 1 1 1 

Fig 2.22 Box Kernel. 



 94 

that involves looking at the blurring as two separate blurrings – a horizontal blur and a 

vertical blur.  First do one, then the other, with the result being exactly the same as the 

above method.  The trick lies in the fact that when the kernel is moved one place to 

the right, the sum of all cells except for the rightmost column has already been 

computed.  Taking this into account, the algorithm applies one line of the kernel at a 

time, moving from left to right.  Each time the kernel moves one place to the right, the 

cell one place to the left of the kernel is subtracted from the total, and the rightmost 

cell is added to the total.  A similar technique is applied to the vertical blurring.  This 

algorithm operates in constant time, ( )NO , with each cell only being accessed twice, 

unlike the brute force method mentioned above, which runs in ( )2NO  time. 

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

P
ro

b
a
b

il
it

y
 V

a
lu

e

Before Blurring Kernel Size of 3 Kernel Size of 5 Kernel Size of 7

 

Fig 2.23 Cross Section of a wall before and after box blurring is applied to the map with 

three different masks, or kernels, size:  3*3, 5*5, and 7*7.  Note the lower probability values 

as the kernel size increases. 

 

When Box Blurring is applied to a very sparse map with few obstacles, there is little 

change, since most cells have the same value and are therefore not greatly changed.  

However, when there are small obstacles surrounded by empty areas, or thin walls 

with empty spaces to either side of them (a very common occurrence) all that is 

accomplished is the lowering of the occupied certainties, and, with a sufficiently large 

kernel, obliterating the walls completely.  In Fig 2.23, the result of applying box 



 95 

blurring to a map using various kernel sizes can be seen.  As the kernel becomes 

larger, the confidence in the existence of the wall decreases, while the empty areas 

near the wall have their values raised.   

 

2.12.3 Gaussian Blurring 

The problem with box blurring a map is that the thin walls are surrounded by large 

expanses of lower-probability grid cells.  What is needed is that less priority be given 

to cells farther away in the kernel from the source cell, and higher priority be given to 

the cells closer to it.  This can be achieved with Gaussian blurring [21].   

 

Gaussian blurring weights the cells, with values 

dependent on their distance from the centre of the 

kernel.  As can be seen in Fig 2.24, the weight given 

to each cell decreases the further it is from the centre 

of the kernel.  While this method does give a better 

result that box blurring, it is more computationally 

expensive, with a costly double sum and a 

multiplication, as can be seen in the following 

formula: 

 
( ) ∑∑

≤

−=

≤

−=
++

+
=

ki

ki

kj

kj

iyixjiyx s
k

d ,,2, *ker
12

1
 

where dx,y is the new cell value, sx+i,y+i is the source cell value, and keri,j is the weight.   

 

Using the ratios shown in Fig 2.24, the gaussian mask was generated and applied to 

the map.  As with the box blurring function, it can scale from a 3x3 kernel up to any 

size, but using too large a kernel effectively renders the map unusable.  The result of 

applying masks of varying sizes to a map containing a single wall are as follows: 

7 28 42 28 7 

28 113 170 113 28 

42 170 255 170 42 

28 113 170 113 28 

7 28 42 28 7 

Fig 2.24 Gaussian Kernel. 



 96 

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

P
ro

b
a
b

il
it

y
 V

a
lu

e

Before Blurring Kernel Size of 3 Kernel Size of 5 Kernel Size of 7

 

Fig 2.25 Cross Section of a wall before and after gaussian blurring is applied to the map with 

three different masks, or kernels, of size:  3*3, 5*5, and 7*7.  Note the lower probability values 

as the kernel size increases is not as severe as with box blurring. 

 

As can be seen in Fig 2.25, gaussian blurring scales much more gracefully to larger 

kernel sizes than does box blurring, with the maximum probability values decreasing 

only slightly as the kernel size becomes larger.  This means that a gaussian mask can 

be used to blur the map, and thereby smoothing over gaps in walls, without reducing 

our confidence in the surfaces that we are sure about by too great a measure.   

 

Fig 2.26 shows a map before blurring, after box blurring with a kernel size of 9, and 

after gaussian blurring with a kernel size of 9.  The gaussian blurred map is clearly a 

closer representation of the map than the box blurred map, while at the same time 

smoothing over any small imperfections in the map. 

 



 97 

   

Fig 2.26 A map without any blurring (left), after box blurring with a kernel size of 9 (middle), and 

after gaussian blurring with a kernel size of 9 (right).  Note that when using box blurring the walls 

have almost disappeared due to the same weight being given to the cells around the cell being 

blurred.  Gaussian blurring fares better due to a higher weight being applied to cells close to the cell 

being blurred that to cells farther away. 

 

 

 

 

 

 



 98 

Chapter 3: Feature Prediction for Filtering Noisy Sonar 

Readings 

3.1 Feature Prediction – An Introduction 

A method of identifying specular readings based on predicting the state of the world 

has been developed for this thesis to extend the work of previous researchers in map 

building using mobile robots.  Three models of the environment are maintained in 

order to build a map, a sonar map S, a local map L, and a global map G.  The sonar 

map S contains features estimated from just the current set of sonar readings.  These 

features take the form of straight line segments.  The local map L maintains a set of 

features estimated from previous scans, but only within the area immediately 

surrounding the robot.  The global map is a grid based metric map that represents the 

environment as a set of occupancy cells [33,46].   

 

A paper entitled “Linear Feature Prediction for Confidence Estimation of Sonar 

Readings in Map Building”[52], detailing the feature prediction algorithm, has been 

accepted for publication at the Ninth International Symposium on Artificial Life and 

Robotics (AROB) 2004 conference in Oita Japan. 

 

The sonar and local maps are predictive models, i.e. they estimate the state of the 

world by using previous sonar readings to predict what the robot should sense in the 

future.  These predictions are used to differentiate between those sonar readings that 

are based on meaningful range measurements and those which are based on noisy 

reflections.  This is expanded upon in section 3.2.  By their very nature, predictions 

can often be inaccurate, especially given the high degree of noise in sonar sensors, 

and for this reason the features are not incorporated directly into the global map G.  

Rather, they are used to guide traditional map update procedures that create a global 

map based on information inferred directly from sonar readings using a sonar model, 

enabling the map building algorithm to compute which sonar readings to use and 

which readings to weaken or discard completely. 

 



 99 

There are seven steps involved in calculating a confidence measure for each sonar 

based on all past and current readings and using it to update a global map. 

1. Create a feature hypothesis for every sonar that detected an obstacle, and place 

it in the sonar model S.  These features take the form of straight line segments. 

2. Compare all features in S with each other in case they represent the same real-

world object. If they do, merge the features while at the same time refining the 

features’ position and orientation. 

3. Identify any features in S that were created from noisy readings, and discard 

them. 

4. Add all remaining features in S to the local map L.  If a feature from S is 

sufficiently similar to a feature in L, the two features are merged and the 

resultant line segment is placed in L.  If a feature in S doesn’t match any 

existing line segment in L then it is added to L unchanged, as a new feature. 

5. Segments in L too far from the robot are removed from the model. 

6. Generate the confidence values in the sonar readings, and decay any feature 

that the sonar should detect but doesn’t. 

7. Use the sonars confidence value to reduce the effect the range reading has on 

the global map G.  The lower the confidence value, the less the map should be 

changed as a result of that reading. 

Each of these steps is expanded greatly upon in section 3.3. 

 

3.2 The Need for Feature Prediction 

Researchers in the field of map building using sonars have often encountered the 

problem of noisy readings that can result from specular reflections [33,42,46,58].  

Specular reflections occur when the sonar beam strikes a smooth surface, which 

causes the beam to reflect at an angle related to the angle at which it struck the object 

(see Fig 3.1 (b) and 3.1 (c)).  A smooth surface is one whose bumps are smaller than 

the wavelength of the sonar beam.  Some researchers [33] use the word ‘specular’ in a 

slightly different way, to refer only to sonar beams that strike a smooth surface and do 

not return correctly to the sonar emitter.  Here, on the other hand, the term is used in 

its more general sense to refer to any beam that is transmitted off a surface at the same 

angle at which it struck that surface.  While it is technically possible to receive a 



 100 

correct range reading from a specular reflection however (Fig 3.1(c)), the majority of 

specular readings result in noisy readings (Fig 3.1 (b)).  

 

Another type of reflection is diffuse reflection, in which a sonar beam strikes an 

object whose surface contains irregularities larger than the wavelength of the sonar 

beam, causing the beam to be scattered in all directions.  In this case a correct range 

reading is almost always received.  

In the case of specular reflections 

however, if the angle of the sensor to 

the orientation of the object is 

sufficiently far from perpendicular, 

then the reflected beam does not come 

directly back to the sonar, as can be 

seen in Fig 3.1 (b).  Non-noisy readings 

can be received from specular 

reflections also, as long as the angle of 

incidence is close to 90
o
, as in Fig 3.1 

(c).  The beam will also return to the 

sonar emitter sometimes from a 

specular reflection at an acute angle, 

but this reading is based on the beam 

reflecting off multiple objects and 

therefore does not represent a correct 

range reading to the nearest obstacle.  It 

is universally agreed that such a 

reading contains no information and 

should not be integrated into the map.  

The problem then becomes that of 

identifying which of the three types of 

reflective behaviour displayed in Fig 

3.1 the sonar is exhibiting.  If the noisy 

readings caused by specular reflection 

can be identified and discarded the 

 

Fig 3.1 (a) Diffuse sonar reflection - when a 

sonar beam hits a rough surface it is scattered 

in all directions and returns directly to the 

emitter. 

 

Fig 3.1 (b) Specular sonar reflection giving a 

noisy reading - when a sonar beam strikes a 

smooth surface at an angle far from 90
o
 it does 

not return directly to the emitter. 

 

Fig 3.1 (c) Specular reflection giving a correct 

reading - when a sonar beam strikes a smooth 

surface at close to 90
o
 the beam will return to 

the emitter. 



 101 

resulting global grid map will be far more accurate.  

 

3.2.1 Previous Attempts at Specularity Estimation 

Konolige [33] recognised this problem and developed his MURIEL method in an 

attempt to solve it.  As discussed in chapter 2, Konolige uses what he called a 

Dynamic Mixture Model to sum all independent sonar readings that report an obstacle 

at a cell (surface readings), and once the sum reaches some value, usually around 2 or 

3, all readings that claim the cell to be unoccupied are assumed to be specular.  This 

method favours occupied cells over unoccupied cells since if two readings disagree on 

the occupancy of a cell, the one that claims it to be occupied is believed.  This follows 

from Drumheller’s [19] sonar penetration condition which states: the freespace 

hypothesis of a sonar reading should not impinge on a high-confidence surface. 

 

The independence of sonar readings is assured by using pose buckets, which ensure 

that a cell can only be updated once as being occupied, and once as being unoccupied 

from any given position (see section 2.8.3).  The basic idea behind this is similar to 

the cancelling step proposed by Moravec and Elfes [46], except that it favours the 

occupied cells instead of the unoccupied cells.  The cancelling step in [46] states that 

whenever a reading claims a cell to be occupied, multiply its probability of 

occupancy, PO(X,Y), by one minus its probability of being empty, PE(X,Y).   

 ( ) ( ) ( )( )Y,XP*Y,XPY,XP EOO −= 1  

This favours the unoccupied cells since once PE(X,Y) reaches the value of 1 all new 

sonar readings claiming the cell to be occupied are multiplied by 1 – 1 = 0 giving a 

probability of occupancy of zero.   

 ( ) ( ) ( )( ) ( ) ( ) 0111 =−=−= *Y,XPY,XP*Y,XPY,XP OEOO  

Konolige’s dynamic model mixture essentially reversed this and instead cancelled out 

the empty readings based on the probability of occupancy at the cell, although his 

mathematics differed considerably, using probability of specularity P(S).  To calculate 

P(S) for each cell in the freespace part of the beam, he took the occupancy likelihood 

value of that cell and, given a value at which the cell is said to be absolutely certain of 

it being occupied, used a linear interpolation function to map this value to P(S).  For 

example, if the occupancy likelihood value of the cell is 0.8, and an upper limit of 3 is 

set for surface readings above which the cell is said to be definitely occupied, then 



 102 

P(S) = 0.8 / 3 = 0.266666.  The freespace likelihood of each of the cells in the sonar 

beam was then multiplied by (1 – P(S)), meaning that the higher the value of P(S), the 

weaker the update applied to the global map. 

 

Although the MURIEL method’s estimation of the readings’ specularity undoubtedly 

creates better maps than it would without this estimation, its greatest drawback is that 

it needs sufficient surface readings at or around that cell before it can filter out noisy 

readings.  When modelling an obstacle in the global map with correct and/or incorrect 

range data, there are two possible scenarios: 

1. A correct reading is received first, and an incorrect reading second, if at all. 

2. An incorrect reading is received first, and a correct reading second, if at all. 

The MURIEL method’s dynamic mixture model can compensate for incorrect 

specular readings in the first case, but it is far less effective in the second case.   

 

If specular readings are received before any correct readings, as is often the case for 

example when travelling straight down a corridor, then the incorrect readings will be 

incorporated into the map.  Whether or not later correct readings rectify the errors 

caused by the earlier specular readings depends on the pose of the robot and how 

many correct readings are received.  Another problem is that some parts of an 

environment, such as concave corners, rarely if ever return accurate readings due to 

multiple reflections and therefore all specular readings that claim a corner to be 

unoccupied have no correct readings to disagree with them. 

 

This chicken and egg problem of requiring surface readings at a cell before incorrect 

readings can be discarded means that it is necessary to make predictions about the 

state of a cell before we receive any correct readings at that cell, or even without ever 

getting any correct readings at all.  These predictions can be made based on sonar 

readings received that don’t directly affect the cell in question, and also on our 

knowledge of how a sonar beam behaves in a noisy environment.  This is possible 

because the environment contains structural regularities and symmetries such as walls 

that can be approximated using straight line segments. 



 103 

 

 

Fig 3.2 (a) Robot facing into a corner often 

receives incorrect readings from sonars not 

sufficiently close to 90
o
 from the walls.  

Fig 3.2 (b) Robots sonar readings facing into the 

corner in 3.2 (a) and the resulting predicted 

features. Note that only sonars 1 and 5 return a 

range reading, all others return no reading at all.  

This is admittedly a trivialised example, purely for 

displaying the concept. 

 
 

Fig 3.2 (c) Interpretation of sonar readings from 

Fig 3.2 (a) without feature prediction using a 

Bayesian update procedure and the sonar model 

from Moravec and Elfes 1985 paper and pose 

buckets.  Black areas represent occupied cells, 

white unoccupied, and varying levels of 

uncertainty are represented by lighter and darker 

levels of grey. 

Fig 3.2 (d) Interpretation of sonar readings from 

Fig 3.2 (a) with feature prediction, based on the 

algorithm in section 1.  It uses a Bayesian update 

procedure, the gaussian sonar model from 

Moravec and Elfes 1985 paper and pose buckets.  

The colour key is as in Fig 3.2 (c). 

 

3.2.2 Example of the Feature Prediction in Operation 

As a brief example of the feature prediction algorithm in operation, take a robot facing 

into a corner as in Fig 3.2 (a).  The central sonars receive incorrect readings due to the 



 104 

beams reflecting off multiple surfaces before coming back to the sensor, if they come 

back at all.  Since all their readings are longer than the horizon of 2.5 metres, they are 

judged to have not detected any obstacles.  Sonars 1 and 5 receive correct range 

readings as they are close to perpendicular to the walls.  Sonars 0 and 6 receive 

incorrect readings due to their angle to the walls, and once again are judged to not 

have detected any obstacles due to their range reading being larger than the horizon.  

Experiments into the operation of sonars show that when a sonar strikes a smooth 

surface it will not return a correct reading unless the orientation of the obstacle is 

close to the range [90 – sonar beam width, 90 + sonar beam width] to the angle the 

sonar is facing.  The first step therefore is, as in Fig 3.2 (b) to assume that there is a 

feature at the centre of the only two sonars to return a valid range reading, sonars 1 

and 5, at an angle of (max Possible Angle + min Possible Angle)/2, which in this case 

happens to be 90
o
 from the angle of the sonar (Fig 3.2 (b)). The algorithm for 

extracting features from sonar scans is presented in section 3.3.   

 

The next step is to model all of the sonar readings and give them all a confidence 

value of 0.5 since as yet there is no reason to doubt their validity – the reason for 

choosing this value is explained in section 3.3.  If any of the sonar beams cross where 

a feature is predicted to be without detecting it, the confidence value for that sonar is 

decreased.  The mapping system can then take these confidence values and use them 

to reduce the degree to which each individual sonar reading affects the map and/or 

establish a cut-off point below which the reading is simply discarded.  

 

As can be seen from Fig 3.2 (c), when all sonar readings are treated equally, i.e. with 

no estimation as to their specularity being made either by feature prediction or using 

past information as in the MURIEL method, then incorrect specular readings ‘wash 

out’ much of the wall and fail to detect the corner at all.  In Fig 3.2 (d) the feature 

prediction algorithm identifies specular readings and discards them if they fall beneath 

a threshold, which the majority of them do.  The left wall of the corner in Fig 3.2 (d) 

is not marked as occupied since no correct readings were received from those cells 

due to the position of the robot and the specular reflections caused by corners as 

discussed previously.  Importantly however, the readings that claimed the corner to be 

unoccupied, as in Fig 3.2(c), have been removed, leaving the corner a medium grey, 

or a value of 0.5. 



 105 

3.3 Algorithm for Generating Features and Calculating Sonar 

Confidence Measures 

In the following algorithm there are two predictive models of the environment, the 

sonar view S and the local model L.  The sonar view consists of features, or line 

segments, that can be estimated from the most recent set of sonar readings.  The local 

model contains a history of all the line segments estimated from past sonar scans.  The 

current sonar range readings are used to predict features in the environment, which 

take the form of line segments which then constitute the sonar model S.  The segments 

in S are then analysed to identify any lines that may have been caused by incorrect 

sonar readings, which are then removed.  The features in S are added to the feature list 

in the local model, L, either as new features that have not been detected before, or by 

being merged with existing line segments that they are sufficiently close to in 

orientation and position.  Finally, the current set of sonar readings are compared to the 

line segments in L.  Any sonar that crosses any of the line segments without detecting 

it has it’s confidence value changed.  This confidence value is then used to alter the 

degree to which that sonar reading affects the global map being built, G. 

 

The algorithm for calculating confidence measures in the accuracy of the sonar 

readings is as follows.  

STEP ALGORITHM 

Create a line segment for every sonar that claims to have detected an 

obstacle and place it in the sonar view S 

1 FOR EACH sonar range reading < maximum range 

Create line segment feature si at centre of beam, at 90
o
 to direction of 

beam,  and place in S 

Compare each line segment in S, si, with all the other line segments in S, 

sj, to determine if they represent the same feature in the environment. 

2 

FOR EACH si in S 

 FOR EACH sj in S NOT EQUAL TO si 

  IF similar(si , sj) THEN 

   Create new feature sk between si and sj and place it in S 

   Remove si and sj from S 



 106 

Remove any feature in S caused by incorrect readings.  Confidence 

values derived from the sonar view are denominated by s

xc , where the s 

signifies that this confidence value was derived from the sonar view, and 

x is the sonar sensor that it applies to. An 
L
 superscript signifies that the 

confidence value was derived from the local view L. 

FOR EACH soni in SONARS 

 Reset confidence of soni, 
s

ic  to 0.5 

FOR EACH sonj in SONARS 

 FOR EACH si in S 

  IF inconsistent(si , sonj) THEN 

   IF sonj should detect si THEN 

    Reduce confidence s

jc  of sonj varying the angle 

   ELSE IF sonj should not detect si 

    Reduce s

jc of sonj varying the distance 

 FOR EACH li in L 

  IF inconsistent(li , sonj) THEN 

   IF sonj should detect li THEN 

    Reduce L

jc  of sonj varying the angle 

   ELSE IF sonj should not detect li 

    Reduce L

jc  of sonj varying the distance 

FOR EACH si in S 

 IF si detected by only one sonar, sonj AND s

jc < Ts 

  Remove si from S 

3 

FOR EACH soni in SONARS 

 Reset s

ic to 0.5 

4 
Compare all remaining features in S with all lines in L, refining the 

hypothesis of the angle and position of the features in L   



 107 

FOR EACH si in S 

 FOR EACH lj in L 

  IF similar(si , lj) THEN 

   Create new feature between si and lj and place it in L 

   Remove si from S and remove lj from L 

 

FOR EACH si in S 

 Place si in L as a new segment 

 Remove si from S 

Features in L too far from the robot are removed 

5 

FOR EACH li in L 

 IF dist(current_robot_position, last_robot_position_detected(li)) > Td 

THEN 

 Remove li from L 

Generate final sonar confidence values. For any segment in L that should 

have been detected but was not, split in two and shorten it.  Confidence 

values derived from the local model L are denoted with a superscript L, 

with the number sonar they apply to represented as a subscript, as in L

xc .  

6 

FOR EACH soni in SONARS 

    FOR EACH lj in L 

        IF inconsistent(si , sonj) THEN 

            IF soni should sense lj if it is there THEN 

                Reduce confidence in soni, 
L

ic , varying the angle 

                Divide lj at point of intersection with sonj, creating lk and ll   

                Remove lj from L and insert lk and ll into L 

                Reduce length of lk and ll 

     IF length( lk ) < TL 

          Remove lk from L 

                IF length( ll ) < TL 

          Remove ll from L 

            ELSE IF soni should not sense lj if it is there THEN 

                Reduce L

ic varying the distance 



 108 

7 

Use sonar confidence values to alter how the sonar information is 

integrated into the global map.  The implementation of this step is 

specific to the method being used to generate the global map, and is 

described in detail later. 

 

Each step is described in detail below.  

 

3.3.1 Step 1: Create a feature for every sonar that detected an obstacle and place 

it in the sonar model S 

Set a maximum range that will be accepted for a sonar reading, beyond which the 

reading will be treated as if it didn’t return a reading.  The larger this range the further 

the robot will be able to ‘see’ but the less reliable the readings will be due to the 

increasing possibility of multiple specular reflections and the weakening of the wave’s 

power.  A reasonable trade-off between myopia and accuracy is 2.5 metres for 

Polaroid transducers.   

 

For each sonar that 

returned a reading of 

less than the 

maximum range 

assume the presence 

of a feature at the 

centre of the outer arc 

of the beam.  At this 

stage all that is known 

about the orientation 

of the feature is that 

for the beam to detect 

it, the difference in 

angle between the 

object and the central 

axis of the beam must be in the range [90 – sonar beam width, 90 + sonar beam 

width] from the angle of the beam.  For example, if the sonar sensor is oriented at 60
o
, 

a feature perpendicular to it is oriented at 150
o
.  Given a sonar beam aperture of 25, 

 

Fig 3.3 The predicted features in the sonar model S after Step 

1.  The robot is facing straight into a wall (as opposed to a 

corner as in previous examples) with sonars 2, 3, 4 and 5 

returning a reading that is less than the maximum range.  

Sonars 0, 1 and 6 return no reading, and sonar 5’s reading is 

incorrect.  The min/max possible angles the line segments can 

be in is in the [] brackets beside each line. 



 109 

the minimum possible angle the feature could be oriented at is 150
o
 – 25

o
 = 125

o
, and 

the maximum orientation it could have is 175
o
. 

 

The min/max values are stored for use later when comparing the line segment with 

others to see if the could represent the same object.  The aperture of a sonar beam 

depends on the particular emitter, but a typical value is 25 degrees [27], which holds 

for the Pioneer 1 robots used in the experiments reported in Chapter 6.  Later, when 

the exact orientation of the feature is required to make predictions regarding a sonar 

reading’s confidence, the value taken for the feature’s orientation is the value half 

way between it’s minimum and maximum possible values.  The advantage of using 

min/max values for the orientation of the line segment is that when it is later merged 

with other line segments its range of possible orientations will be continually refined, 

and finally a very strong hypothesis of the lines’ orientation is calculated. 

 

As for the length of the feature, only the robot’s local area is being estimated, so it is 

best if  the feature does not extend far outside this area.  Therefore the length of the 

line segment is set to twice the maximum range of the sonars with the centre being at 

the centre of the edge of the sonar beam that detected it.  This gives a local map of 

around 5m * 5m. 

 

As an example, in Fig 3.3 with the robot facing a wall, four sonars, 2 through 5, return 

a reading that is less than the maximum range.  A line segment is placed at the end of 

the central line of each sonar at 90
o
 to it. 

 

3.3.2 Step 2: Compare each line segment Ss i ∈ , with all the other line segments 

in S, sj, to see if they could represent the same feature in the environment. 

This method of feature prediction makes the assumption that the robotic platform 

contains sonar emitters arranged in a ring in sequential order.  For example, in Fig 3.4 

the sonars on the robot are arranged from sonar 0 to sonar 6, left to right.  Three 

conditions must be met for any two features in the most recent snapshot to match: 

1. The two features must have been detected by adjacent sonars.  As an 

illustration, take for example the robot configuration in Fig 3.4.  If sonar 1 

detects an obstacle, sonar 2 does not and sonar 3 does, sonars 1 and 3 cannot 



 110 

be detecting the same obstacle, otherwise the sonar between them would have 

detected it too. 

2. The [MIN, MAX] range of possible angles for both segments must overlap.  

For example, two segments with the possible angles of [0 , 50] and [70, 120] 

could not be the same object, whereas lines with the ranges of [0 , 50] and [30, 

80] could possibly be the same object since they could both be at an angle 

between 30 and 50 degrees. 

3. The line segments must be sufficiently close in 2D space to the hypothetical 

segment they would create if amalgamated.   

 

The first two conditions are 

simple to evaluate, but the third 

requires some explanation.  To 

determine if a line segment is 

close to another, we use a line 

matching algorithm similar to 

that used in [15], albeit slightly 

modified.  Draw a box around 

the first line segment, as in Fig 

3.5, and if the other line 

segment passes through this box 

or is completely contained 

within it then is close enough to the first line.  The size of the box is a parameter of 

the algorithm, but setting each corner to be 200mm from the nearest end point of the 

first line in both the X and Y direction has been found to yield good results.  A larger 

value will cause more features to 

be matched, but if too large a value 

(i.e. a value much greater than the 

diameter of the robot) is used, in 

tight spaces features on opposite 

sides of the robot may be 

mistakenly judged to match each 

other.  

 

 

Fig 3.4 Predicted features after Step 2 is applied to the 

sonar model from Fig 3.3.  The three line segments S1 

S2 and S3 have been merged to create one segment. 

 

 

Fig 3.5 The boundary box drawn around a line 

segment through which another line segment must 

pass to be judged to match it. 



 111 

If the two segments match then both are removed from S, and the new segment 

created from them has a new [MIN,MAX] range of possible angles it can be at which 

is equal to the overlap of both parent segments’ angle ranges.  For example, if the two 

segments had angle ranges of [0 , 50] and [30 , 80], then the child segment will have 

an angle range of [30 , 50].  This can be explained by the fact that the first parent had 

an angle somewhere between 0 and 50, but we didn’t know exactly where.  It could 

have been 10
o
, it could be 45

o
, with just one sonar reading there is no way of 

knowing.  By matching the first parent with the second, which has an angle range of 

[30, 80], we know that the first line can no longer be at an angle of <30 or it would be 

outside the angle range of the second line, so it’s new minimum possible angle is 30.  

It also can’t be at an angle of >50 or it would be outside the angle range of the first 

line.  The child segment is added to S.  

 

To finish the amalgamating of the two segments, translate the child segment so that 

the perpendicular distance between it and the midpoints of each of its parent features 

is equal. 

 

Fig 3.4 shows the sonar model S from Fig 3.3 after Step 2 has been applied to it.  Line 

segments s1, s2 and s3 have been merged because they were sufficiently close to each 

other and their range of possible angles overlapped.  The single line replacing them 

has a possible angle range of [-10,+10], which is much better defined than any of its 

three parent lines, each of who could have been at any of fifty angles (give a sonar 

beam aperture of 25
o
), rather the possible twenty angles the new line can be at.  Line 

segment s4 was not found to match any of the other lines so it is unchanged at this 

point. 

 

3.3.3 Step 3: Remove any line segments in S caused by incorrect readings 

As it is desirable for the predictive model of the world to be as accurate as possible, it 

is necessary to identify features created from sonars readings that are the result of 

specular reflections and to discard them.  While many specular reflections that return 

a reading, usually due to multiple reflections, are long enough that they are beyond 

the maximum range horizon, some are not.  Sonars sometimes exhibit this behaviour 

in corners where the sonar beam hits first one side of the corner, then the other before 

coming back.  Since both walls are very close together it appears as if there is an 



 112 

object not far behind the actual corner.  Readings such as this must be identified and 

removed from the model. 

 

To identify erroneous features 

the sonar is modelled by three 

lines – one which marks the left 

edge of the beam, one which 

marks the centre of the beam , 

and one to mark the right edge.  

Each line begins at the sonar 

and has a length equal to the 

range reading returned by that 

sonar (Fig 3.7).  If any of the 

three lines intersects with one 

of the line segments in S then 

its confidence measure is changed.  The confidence measure of each sonar is then 

used to remove erroneous line segments from S before they can be integrated into the 

local model L.  Note that this confidence measure is not the final one used, and is later 

discarded before being recalculated.  This ensures that confidence values based on a 

sonar being inconsistent with an erroneous feature are ignored. 

The manner in which the confidence in the sonar is changed, and to what degree, 

depends on the angle of the sonar to the line segment it intersects as well as the 

difference in distance 

between the range 

reading of the sonar 

and the distance from 

the sonar to the line 

segment.  The initial 

confidence in the 

sonars reading, sc , is 

0.5.  The s superscript 

specifies that the 

confidence measure is 

 

Fig 3.6 State of the sonar model S from Fig 3.4 

after Step 3 has been applied. Sonar 5 is 

inconsistent with the line created by sonars 2, 3 

and 4, and its confidence is low enough so that the 

line predicted by it has been removed. 

 

Fig 3.7 Modelling the sonar beams from Fig 3.2 (a) with the robot 

facing into a corner using three line segments. The dashed lines 

represent the hypothetical line segments predicted from the range 

readings from sonars 1 and 5. 



 113 

based on the sonar view, and not the local model.  The reason for this is that the final 

confidence measure is intended to be used in a Bayesian update formula to reduce the 

degree of the update being applied to a map.  If the sonar intersects with no features 

and the initial confidence measure of 0.5 is unchanged, then it will have no effect on 

the map update procedure.  If the value is reduced to less than 0.5 due to the sonar 

intersecting a feature without detecting it, then it will reduce the strength of the map 

update procedure, as it should.  Whenever a new set of sonar readings are added, all 

the sonar confidences are reset to 0.5, a new sonar model S is generated, integrated 

with L and the confidence values are recalculated. 

 

In order to identify erroneous segments confidence values must be assigned to the 

sonars.  Two confidence values are computed for each sonar that is not consistent with 

a line segment.  The first, s

ac , is the confidence in the sonar with regards to the 

difference in angle between the sonar and the line segment.  The second, s

dc , is the 

confidence in the sonar in relation to the difference between the range reading and the 

distance from the sonar to the line segment. 

How s

ac  and s

dc  are calculated depends on the difference in angle between the sonar 

and the feature it intersects with.  There are two possible scenarios. 

1. The angle between the sonar and the feature is such that the sonar should 

detect the feature if it were there.  This is when the angle between the sonar 

and the feature is within ‘sonar width’ of perpendicular.  In this case alter the 

confidence in the sonar and decay the feature. 

2. The angle is such that the sonar should not detect the feature, given that the 

surface is smooth enough to cause a coherent transmission of the wave’s 

energy.  In this case alter the confidence in the sonar, but do not decay the 

feature. 

 

3.3.3.1 Scenario 1: The Sonar Should Detect the Feature But Does Not 

In the first scenario, where the sonar should detect the feature but doesn’t, something 

is obviously wrong with the predicted feature – perhaps it is shorter than previously 

estimated.  In this case the closer the difference in angle between the sonar and the 

feature is to perpendicular the higher the confidence in the sonar’s reading, therefore 



 114 

s

ac  should approach 0.5 as the sonar beam gets closer to perpendicular to the feature. 

The distance between the sonar and the feature is immaterial in this scenario since 

regardless of the distance, as long as the object is less than the maximum range from 

the sonar and at the correct angle the sonar should detect it.  s

dc  should therefore be 

equal to 0.5.  Theoretically, in the Bayesian formulas described later for using 

confidence values when updating the global map, values greater than 0.5 will cause 

the overall value to rise, and values less than 0.5 will cause it to fall, with values equal 

to 0.5 will have no effect whatsoever on the final outcome.  Therefore the closer to 0.5 

the value of either s

ac  or s

dc  the less of an effect either of them will have on the 

overall sonar confidence measure.  However, sc  never goes above 0.5, which means 

that the confidence value generated by feature prediction is not used to strengthen the 

global map update.  If sc  is left at its default value of 0.5, the global map update is 

not weakened.  The lower the value of sc  the weaker the global map update.   

 

In the case where the sonar should detect the predicted feature but doesn’t: 

 5.0=s

dc  

 
( )( )

25.0*
90

5.0 






 −−
−=

ω
ωθs

ac  

where θ is the difference in angle between the sonar and the feature, and ω is the 

beam aperture.  This formula for s

ac  maps its value in the range [0.25,0.5] which 

means that a feature that should be sensed by a sonar but isn’t can, at worst, halve the 

confidence in the sonar (see 

Fig 3.8).  s

ac  is restricted to 

a range of [0.25, 0.5] 

because there is an error 

with the estimated features, 

and so their effect on the 

confidence value of the 

inconsistent sonar is 

decreased. 

 
 

Fig 3.8 Calculating 
s

ac  when the sonar should sense an 

object but doesn’t, using a sonar beam aperture of 25
o
. 



 115 

 

 

3.3.3.2 Scenario 2: The Sonar Should Not Detect the Feature 

In the second scenario, where the sonar beam intersects the predicted feature at an 

angle such that we would not expect it to return a correct reading, the method of 

calculating s

ac  and s

dc  changes.  In this case it is the confidence with regard to angle 

that is invariant.  This is due to the fact that if, for example the sonar is at an angle of 

50
o
 to the feature it would not be expected to return a reading any more than it would 

at an angle of 10
o
 to the feature.  That is, once it has passed the threshold ω degrees 

from perpendicular, we do not expect to receive a correct reading from it. 

 

The confidence with relation to distance, s

dc , is another matter.  As can be seen in the 

sonar beam model in Fig 3.9 (a), when modelling the freespace part of the beam the 

closer the cell is to the sonar emitter the more strongly it is believed that the cell is 

unoccupied.  With this in mind, note that the purpose of using a scaled confidence 

value rather than a simple 0 or 1 is so that cells in the sonar beam in the region of the 

feature and beyond it are unaffected while leaving the cells in front of the feature be 

affected by the reading, albeit by to a lesser degree.  When the feature is far from the 

sonar emitter, as in Fig 3.9 (a), only a relatively high confidence value is needed to 

prevent the cells on the at the feature and on the far side of it from being incorrectly 

labelled as unoccupied while allowing most of the other cells in the beam to be 

correctly labelled as empty. 

 

 

Fig 3.9 (a) Sonar beam with an undetected 

feature at distance δ1 from the emitter.  The 

darker the area, the more strongly it is 

believed to be unoccupied. 

Fig 3.9 (b) Sonar beam with 

undetected obstacle δ2 from the 

emitter.  The strength of the freespace 

update has been reduced. 

 



 116 

However when the obstacle is nearer to the sensor, as in Fig 3.9 (b), a lower 

confidence value is required in order for all the cells at and beyond the feature to 

unaffected by the freespace reading.  For this reason, s

dc  must be relative to the 

distance of the obstacle from the sonar, δ, and the length of the range reading R. 

 

Moravec and Elfes’ [46] 

gaussian sonar model for the 

sonar beam claims that the 

sonars power reduces at a rate 

of ( )2Rδ  the further from the 

sonar the beam travels, where δ 

is the distance of the cell being 

considered from the sonar and 

R is the range reading returned 

by the sonar.  The same ratio is 

used here with s

dc  being 

calculated as: 

( )
2

2
R

c sd
δ

=   

This maps the value s

dc  into the range [0, 0.5], with its value approaching 0.5 the 

farther from the sensor the predicted feature is.  As mentioned earlier, s

ac  remains 

invariant in this scenario, so:  

5.0=s

ac  

This means it will not affect the result one way or another, as it should not since as the 

angle changes it does not affect how the feature should be treated. 

 

Once s

dc  and s

ac  have been computed, they are combined to give a single confidence 

value for the sonar, sc .  sc  is given a starting value of 0.5 because it is intended to be 

used in a Bayesian update procedure in the map building process using the formula: 

 ( ) ( )
( ) ( )( ) ( )ss

s

cOCCPcOCCP

cOCCP
OCCP

−−+
=

1*1*

*
'  

 

Fig 3.10 Calculating 
s

dc  with a range reading of 

1000mm.  The closer the obstacle comes to the range 

reading received by the sonar, the higher the 

confidence in the sonar with regards to distance, 
s

dc . 



 117 

A value of 5.0=sc in this formula will make the probability of 

occupancy, ( ) ( )OCCP'OCCP = , i.e. nothing happens to the occupancy value. 

 

The two confidence values, s

dc and s

ac , are combined first with each other, and then 

with the current confidence value for the sonar, sc , using an approach inspired by 

techniques for parallel combination of rules in expert systems [29].  A rule was 

developed for the combination of certainty factors in the expert system MYCIN which 

combined two certainty factors in the range [-1,+1] called a and b.  The rule states: 

 ( )
( ) ( )

( )






<<
>>

+
−−−

−−−
=

otherwise

0band0aif

0band0aif111

ba

ba,CF

b*a

b,aCF  

The range of confidence values used in MYCIN, [-1,+1], differs from the range used 

here, [0, 0.5].  In order to use the rule above, the values in the range [0, 0.5] are 

analogous to the values [-1,0] as they can both be seen as negative confidence in an 

hypothesis.  To convert a number in the range [0,0.5] to the range [-1,0], subtract 0.5 

from it and divide the result by two.  For example, 0.4 in the range [0,0.5] becomes 

 ( ) 2025040 .*.. −=−  

in the range [-1,0].  For the sake of simplicity, the function R is used to convert a 

number from the range [0,0.5] to the range [-1,0], and is defined as: 

 ( ) ( ) 250 *.nnR −=  

The function R
-1
 is used to convert a number from the range [-1,0] to the range [0,0.5], 

and it is defined as: 

 ( ) 5.0
2

1 +=− n
nR  

Therefore, rather than pass the actual confidence values s

dc  and s

ac  to the CF function, 

pass R( s

dc ) and R( s

ac ).  The confidence value created by the CF function is in the 

range [-1,0], and must be converted back into the range [0,0.5] using R
-1
.  The values 

s

dc  and s

ac  will always be ≤ 0.5 so their converted values will be ≤ 0.  This means that 

only the second and third parts of the rule are required, and the rule can be simplified 

as follows: 



 118 

• If ( ) 0<s

dcR and ( ) 0<s

acR , i.e. s

dc < 0.5 and s

ac  < 0.5 then the combined 

confidence value s

dac  is: 

( ) ( )( )( )
( ) ( )( )

( ) ( )( )
( )( ) ( )( )( )

( ) ( ) ( ) ( )sas

d

s

a

s

d

s

a

s

d

s

a

s

d

s

a

s

d

s

a

s

d

cRcRcRcR

cRcR

cRcRCF

cRcRCF

cRcRCFR

++=

−−−−+−=

−−−=

= −

1*11

,

,

where,c 1s

da

 

 

The CF function must then be converted back a number in the range [0,0.5] 

using R
-1
: 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )
5.0

2

1 +
++

=++−
s

a

s

d

s

a

s

ds

a

s

d

s

a

s

d

cRcRcRcR
cRcRcRcRR  

but since ( ) ( ) 2*5.0−= s

d

s

d ccR  and ( ) ( ) 2*5.0−= s

a

s

a ccR , the above formula 

simplifies down to  

 
( )

therefore,25.05.05.0
2

122 s

a

s

d

s

a

s

d cc
cc

++−=+
−

 

 s

a

s

d

s

da ccc 2=  when 5.0<s

dc and 5.0<s

ac  

• If either ( ) 0=s

dcR or ( ) 0=s

acR , i.e. 5.0=s

dc or 5.0=s

ac  then the combined 

confidence value, s

dac  is additive:  

( ) ( )( )( )
( ) ( )( )

( ) ( )
therefore50

2

250250

1

1

.
*.c*.c

cRcRR

c,RcRCFRc

s

a

s

d

s

a

s

d

s

a

s

d

s

da

+
−+−

=

+=

=
−

−

 

50.ccc s

a

s

d

s

da −+=  when either s

dc or s

ac  is equal to 0.5. 

  

The CF function is applied twice in order to calculate the confidence in the sonar. The 

first time it is applied it integrates s

dc  with s

ac  to give their combined confidence value 

s

dac , as described above. 

  



 119 

The second time the CF function is applied, it merges s

dac  with the previous 

confidence in the sonar, sc , to give the new confidence in the sonar, 'sc .  All the 

maths from earlier carries over, so: 

 s

da

ss ccc *'*2'=  if 5.0<sc C < 0.5 and 5.0<s

dac , otherwise 

 5.0' −+= s

da

ss ccc   

The reason for this is that the sonar may intersect with more than one feature, for 

example in a corner, so this incremental update allows each sonar’s confidence 

measure to be modified for each feature it is inconsistent with.  A new confidence 

measure s

dac  is computed for each line segment that the sonar intersects with, and this 

is combined with the sonars current confidence value.  As stated earlier, the initial 

confidence value of each sonar is 0.5. 

 

Once all sonars have been assigned a confidence measure, all line segments in the 

sonar model S that were detected by just a single sonar, with that sonar having a 

confidence measure, sc , of less than a value TS, are removed.  As before, thresholds 

are subjective, but a value of around 0.35 has been found to work quite well.  The 

reason for stipulating that a feature must be detected by just a single sonar in order to 

remove it, is that it is highly unlikely that two sonars will both receive specular 

readings in the same scan that are similar enough to seem to form a feature at an angle 

which is valid for both sonars.  Therefore if two sonars agree on the presence of a line 

segment, even though they pass through another predicted line segment it is better to 

err on the side of caution and believe them. 

 

Once the above has been completed the procedure is repeated, but this time 

comparing the sonar beams to the line segments in the local model L.  The confidence 

measures Lc  are calculated and any segments in S that were caused by just one sonar 

with that sonar having a confidence of below TS are removed.   

 

At this point in the algorithm, any features in the sonar view S that are inconsistent 

with other features either in S or in the local model L have been removed.  All sonar 

confidence values Lc  must now be reset, as they are based on the local model L 



 120 

before the sonar view has been integrated with it.  They will be recalculated in step 

six, when the sonar view has been fully integrated with the local model 

 

3.3.4 Step 4: Compare all remaining line segments in S with all lines in L, 

refining the hypothesis of the angle and position of the lines in L   

This step is similar to step two, in which all line segments in S were compared with 

each other to determine whether or not they were sufficiently similar in orientation 

and distance from each other to represent the same feature in the environment.  

However, for this step, instead of matching si against sj, each line in the sonar model S 

is compared with every line in the local model L.  Whichever lj offers the best match, 

i.e. has the smallest possible angle range, is merged with si.  If a Si does not match any 

line in L, it is added to L as a new segment. 

 

The process of merging the two lines is very similar to the method used in step two, 

but now in addition to changing the range of possible angles for the merged line, it 

must also be translated to position between the two segments it is formed from.  In 

step two it is placed exactly half way between the two parent features si and sj, but that 

was because both segments had been formed from just a single reading and therefore 

nothing distinguishes one line as being better than another.  Now there is the 

possibility that lj has been detected from many different positions and orientations so 

its pose is very well defined – this is represented by the fact that its range of possible 

angles is very small.  This feature must therefore be given a higher precedence than a 

newly created feature when deciding exactly where to place the merged feature.  The 

answer is that it is placed between its two parent features at a perpendicular distance 

of 

( )
( )

( )
2

tan
*

ji

j

i
landsbetweencedisaverage

rangeanglelofsize

rangeanglesofsize
   

from the previous feature.  Therefore if both lines have an equal angle range so that it 

is impossible to tell which is better, the merged line is placed half way between them.  

If the certainty of the previous feature is higher than the new one however, the merged 

feature is place closer to the previous wall.  For example, if the angle range of si = 

[30,80], the angle range of lj = [50,60], and the average distance between both lines is 



 121 

10mm, then the combined line will have a range of possible angles of [50,60] (due to 

the overlap rule) and be placed mm1
2

10

3080

5060
=

−
−

* from li in the direction of si. 

 

3.3.5 Step 5: Segments in L too far from the robot are removed 

The map kept by this model is a local map, and only records features in the close 

vicinity of the robot.  This minimises the problems caused by things such as angular 

drift and slippage, which can reduce the value of a global map, and require 

localisation techniques to combat them.  Each time a segment in L is identified in S, 

its position is updated to keep it inside the local model.  This means that the features 

do not lengthen and do not extend outside the local map.  So, when a feature in L has 

not been matched in a sonar scan for a given distance Td, it is simply deleted.  Since 

the local model extends around the robot to a distance of about 2.5 metres (the 

maximum distance allowed for a sonar reading) on all sides, a value for Td of 3 metres 

has been found to yield good results.  

 

3.3.6 Step 6: Generate final sonar confidence values, and split and shorten any 

segment in L that should be in S but is not. 

At this point in the algorithm, all of the line segments created by the latest sonar scan, 

the sonar view S, have been integrated into the local map L.  All lines in L too distant 

from the robot have been removed, and all segments caused by specular reflection 

have been discarded.  This step computes the final sonar confidence values, as well as 

decaying any features in the local model L that should have been detected in the most 

recent sonar scan but were not. 

 

The sonar beam is once again modelled using three lines representing the left edge of 

the beam, the right edge and the centre as in step 3.  If a sonar beam intersects with 

any of the segments in L without detecting it, at such an angle as the sonar would be 

expected to return a correct reading from them, then the line segment is split in two at 

the point of intersection of the sonar and the line, and both newly created segments 

are shortened as in Fig 3.11.  This is used to remove old features that are the result of 

specular reflections that it was not possible to identify from other sonar readings.  

Any segment that falls below the threshold TL = 30% of its initial length is removed 

from the model.  At this length, either a number of sonar readings have been 



 122 

inconsistent with the feature, making it very unlikely that it exists, or it is the 

truncated segment that has been removed from a feature whose initial length was 

overestimated.  Fig 3.11 gives an example of this in practice as a robot goes past a 

doorway. 

 

As explained earlier, the sonar should be expected to return a correct range reading 

from a smooth surface if the surface is within the sonar width from perpendicular to 

it.  For example, given a beam aperture of 25 degrees, any smooth obstacle at an angle 

of between [90–25,90+25] = [65,115] degrees from the central beam of the sonar 

should be detected by it.  

Real world 

 

Local Model L 

 

Real world 

 

Local Model L 

 

Fig 3.11 (a) The robot detects a wall to its 

right and models this with the feature lj. 

Fig 3.11 (b) Robot’s sonar reading is 

inconsistent with lj so lj is split into lk and ll . 

 

 

If the sonar intersects a line segment, and would not be expected to return an accurate 

reading due to the angle between the sonar beam and the obstacle being too great, 

then the confidence in the sonar is reduced using the same methods as explained in 

step 3. 



 123 

 

Real World 

 

Local Model L 

 

Real World 

 

Local Model L 

 

Fig 3.11 (c) Robot’s sonar reading is 

inconsistent with feature ll, so it is split into 

two.  The short segment at the end discarded 

as it is below the length threshold TL. 

 

Fig 3.11 (d) The wall is reacquired, so a new 

feature lm is created, and merged with lk and 

ll. 

An advantage to splitting an inconsistent feature that should be detected into two 

rather than using another strategy for decaying it, for example shortening or removing 

it from L directly, becomes apparent in Fig 3.11 where the robot is passing a doorway.  

We observe that if a wall is calculated to exist, and it suddenly disappears, there is a 

strong possibility that it will reappear after a short distance.  The line segment ll can 

be seen as preventing the wall in front of the robot from being marked as unoccupied 

by incorrect specular readings.  By allowing ll to exist until it has been shortened to 

the threshold TL where we can be sure that the lack of an obstacle in the sonar beam 

represents a continuous break in the wall rather than a short gap, any obstacle that 

carries on from a previously detected obstacle will not be marked as unoccupied.  This 

method has been found to perform significantly better on both concave and convex 

corners also. 

 

A possible disadvantage to continually splitting line segments is that if TL is too small 

then many small segments will remain in L without being removed or detected.  This 



 124 

can adversely effect the accuracy of the computation of confidence measures in the 

sonars, since a sonar may be inconsistent with many small line segments, greatly 

reducing its confidence when perhaps the sonar reading is fine and those line 

segments should have been removed.  However, keeping TL above 20% removes this 

problem since lines greater than this size are much more likely to be detected, split 

and removed from L.   

 

3.3.7 Step 7 - Using Sonar Confidence Values To Build Maps 

The process described above generates a confidence value in the range [0, 0.5], with 

zero meaning we have no confidence in the sonar reading, and 0.5 meaning that no 

evidence has been found to cause us to disbelieve the reading.  The question now is 

how confidence values are employed in updating the global map G. 

 

The answer is that it depends on the sonar model being used in the map building 

process, the range of values being used in the map and how they are generated.  The 

desired end result is that, given the value V that is being used to change the 

probability of occupancy of a cell, V should be integrated with the confidence 

measure C such that the degree to which it changes the occupancy value of the cell is 

lessened.   

 

For example, when updating an occupancy grid using the formulas put forward by 

Moravec and Elfes in [46], two values are calculated for each sonar beam, P(OCC) 

and P(EMP), the probability of a cell being occupied and empty respectively.  Both 

these values are in the range [0,1].  To use the sonar confidence value with P(EMP), 

simply apply the Bayesian update formula to it: 

 ( ) ( )
( ) ( )( ) ( )C*EMPPC*EMPP

C*EMPP
'EMPP

−−+
=

11
 

and do the same for P(OCC).  If the confidence value C is 0.5, its default value, then 

P(EMP) and P(OCC) will remain unchanged, and as C approaches zero, so do 

P(EMP) and P(OCC). 

 

To use the confidence value with Konolige’s map building algorithm MURIEL, it can 

be treated differently.  The MURIEL method, as explained earlier in the chapter, uses 

a different technique to determine the possibility of a sonar reading being specular, 



 125 

P(S).  As mentioned, it suffers from the problem that it needs sufficient readings at a 

cell claiming it to be occupied (surface readings) before it can determine if a reading 

claiming it to be empty is specular or not.  However once it has enough surface 

readings it works quite well.  The MURIEL method can work hand in hand with the 

feature prediction method.  Using feature prediction eliminates the greatest weakness 

of the MURIEL method, that of having to wait until it has enough surface readings 

before P(S) can be calculated properly.  It is now possible to calculate the probability 

of specularity based both on past information (the MURIEL method) and expected 

future information (feature prediction).  To do this, P(S) is calculated as usual by the 

MURIEL method and is then integrated with the confidence factor C using the 

following Bayesian formula:  

 ( ) ( ) ( )
( ) ( ) ( )( ) ( )( )C*SPC*SP

C*SP
'SP

−−−+−
−

=
1111

1
 

The value (1-C) is used rather than C because the end result is that, as C gets smaller 

P(S) should rise. 

 

3.4 Conclusion 

 The feature prediction algorithm and sonar confidence calculation method described 

in this chapter have been implemented in the SpecularEstimator service described in 

Chapter 4, and is used with the ME85mod, ME88mod and K97mod map building 

services also described in Chapter 4.  An experimental evaluation of the benefits of 

using Feature Prediction is presented in chapter six by determining the quality of the 

generated maps both with and without feature prediction being employed.  

 



 126 

Chapter 4: Software Architecture for Robotic 

Experimentation 

4.1 Introduction 

A combination of two robotic control architectures were used in experimentation for 

this thesis.  Low-level robotic control was performed by the Saphira architecture from 

ActivMedia, in conjunction with the Aria api.  All higher level operations such as 

mapping, path planning and feature prediction, were performed using the software-

services architecture designed and implemented during the course of this research. 

 

This chapter is divided into three broad sections.  The first section deals with the 

Saphira robotic control architecture.  Due to the fact that the software modules written 

for this thesis are completely self contained, and can operate as the deliberative layer 

on top of any architecture, the Saphira architecture had little influence on the 

generation of the maps during experimentation.  For this reason the Saphira 

architecture is not presented in depth here.  A large body of documentation is 

available at http://robots.activmedia.com if further information is required. 

 

The second section details the software architecture that performs all high level 

operations.  This was written primarily in C++, using object orientation techniques.  A 

standard interface to all services is presented, using the client/server paradigm.  A 

single point of entry for data is enforced, which the various services can access in 

either a synchronous or asynchronous manner, for real time and non-real time 

applications respectively. 

 

The third section explains in detail each component of the overall architecture.  These 

include the objects responsible for the following areas: 

• Map storage. 

• Map generation. 

• Client registration to a service. 

• Thread management/simultaneous access to resources. 

• Any-time feedback from server to client. 



 127 

• Feature prediction algorithms. 

• Pose bucket maintenance.  

• Interfacing the Saphira architecture with the software architecture presented 

later. 

• Path Planning. 

There are six map building systems presented, ME85, ME88, K97, ME85mod, 

ME88mod and K97mod.  The first three systems are based directly on the theories of 

Moravec and Elfes, Matthies and Elfes, and Konolige respectively, although they 

contain completely new code.  The final three systems, each ending with the term 

mod, contain modifications on the original theories of the authors just mentioned.  

These modifications include: 

• Feature prediction, to calculate the probability of specularity of sonar readings 

from predicted features. 

• An enhanced version of Konolige’s dynamic mixture model for calculating the 

specularity of sonar readings from previous information. 

• In the case of ME85mod, the formulae used to incorporate sonar readings into 

the map have been altered to remove the bias favouring freespace readings 

over readings reporting an obstacle. 

 

4.2 The Saphira Architecture for Autonomous Mobile Robots 

The Saphira architecture is an integrated sensing and control system used to control 

autonomous mobile robots.  It uses a client/server paradigm that abstracts Saphira 

from the particulars of any one robot, making it very portable, as long as the robot 

adheres to the server protocol.  The server is responsible for low-level operations, 

such as monitoring the sensors and motor control, based on commands from the 

client. 

 

While there are numerous robot simulators available for use with the Pioneer 1 robot, 

Saphira stood out as the best option for four reasons.  Firstly it uses a robust and 

pragmatic programming interface through the ARIA C++ libraries which is 

completely object oriented, leading to easier and better design.  Secondly, it was 

designed with ActivMedia (creators of the our robot the Pioneer 1) robots specifically 



 128 

in mind.  Thirdly, it is very well supported, with a large community of users and an 

active and helpful support team.  Finally, it is very cost effective, with a single license 

entitling the buyer to both Saphira, ARIA, and all future upgrades. 

 

In the Saphira architecture, the robot is considered to be the server, which the Saphira 

client connects to and communicates with, as in Fig 4.1.  The client is responsible for 

low level operations, and sends direct motion commands to the robot server.  The 

server sends an information packet to the client every 100ms containing position, 

velocity and sensor readings.  While the server is always on-board the robot, the client 

can be on-board or off-board, on a host computer.  The software architecture created 

for this thesis acts as a second server which the Saphira client communicates with.  

This server is responsible for the more high-level operations, such as mapping.   

 

  

Fig 4.1 Saphira server architecture 

 

The organisation of the Saphira architecture is partly vertical and partly horizontal.  

Operations can be carried out in both real-time and any-time.  Operations that are 

required for real-time control, such as obstacle avoidance and wall following, can be 

completed within a single processing cycle of the robot.  Non time critical operations 

such as map building and localisation, on the other hand, can operate asynchronously 

to the low level operations without impeding them in any way.  



 129 

 

Fig 4.2 – Overall Saphira architecture for robotic control. 

 

Saphira contains a central repository for all information is has gleaned from the 

environment, called the Local Perceptual Space (LPS) seen in Fig 4.2.  All sensory 

data, such as sonar, laser and vision, is incorporated into this model.  A form of 

mapping and localisation is possible using this world model.  However, the LPS was 

not used, as it was determined that the LPS was not appropriate for the 

experimentation required for a number of reasons: 

• The world is modelled as a set of features, such as corridors, doors and walls.  

These features are not probabilistically represented, and are added/removed 

based on an ad hoc approach.  It was infeasible to create grid based maps with 

this framework, as it was based on a fundamentally different modelling 

paradigm. 

•  The LPS is currently still a research effort, and far from perfect.  It can often 

be observed to make gross errors, with the resulting robotic performance being 

far from optimal. 

• The LPS is tied firmly to the Saphira architecture.  It is desirable for the 

modules developed for this thesis to be as flexible and portable as possible.  

Therefore the architectural decision was taken to write all code from scratch, 

enabling it to be used with any robot configuration, as the deliberative layer of 

any robot control architecture.  



 130 

4.3 Software Systems Used in Experimentation 

A set of software systems were designed and implemented for this thesis in C++ for 

the purpose of examining the difference in performance between different map 

building methodologies put forward by various researchers, as well as investigating 

the effect of modifications on the quality of maps generated. 

 

4.3.1 Mapping algorithms represented as Service Providers to a Client 

Six software map building modules were developed, each being a standalone service 

capable of running either in a distributed system, ideally with one service per 

machine, or all on a single machine.  Distributing multiple services on a number of 

machines generally results in superior performance, as some services are very 

processor intensive, and running both multiple mapping services on a single desktop 

workstation (the development environment used due to cost considerations) can lead 

to delays in processing the sensor readings.  Either multiple computers, connected 

using a distributed medium such as CORBA, or a more powerful machine, such as a 

SPARC station, are required to make the robot operate in real time.  However, a 

distributed framework allows for greater extensibility than a single high-powered 

machine, as adding new services without impacting real time performance can be 

achieved by simply adding a new computer to the network. 

 

4.3.2 Distributed Robotic Framework 

A distributed CORBA framework for mobile robot control was developed in 

conjunction with others in the robotics group in the University of Limerick.  This 

framework distributes the mapping services created for this thesis, as well as services 

designed by other members of the group, such as path planning, mapping systems 

based upon neural net techniques, and pursuit-and-evasion behaviours.  Each of these 

services allows a client to register with them, takes in the sensor readings and places 

them in a queue to be processed in whatever way is appropriate to that service.  This 

framework enabled the simultaneous testing of all six map building systems with all 

of them running in parallel off the same robot in real time, and ensured that each 

service received identical sensor readings.  The maps generated by each system could 

then be compared directly with each other, as they all related to exactly the same area 

and the same test run.  See Appendix A for diagrams of the distributed architecture. 



 131 

 

 

Fig 4.3 Complete Robotic Control architecture.  All data for the mapping, feature prediction 

and localisation modules flows through the ServiceControl object.  All modules can be co-

located on a single machine, or there can be a machine boundary between the 

RobotServiceController and the ServiceControl object.  This diagram includes research 

undertaken both for this thesis, and also by other researchers in the UL Robotics Group.  A 

subset of the modules in this architecture were used in experimentation, see Appendices for 

additional diagrams. 

 



 132 

4.3.3 Mapping Systems Summary 

The naming convention used in the following systems is as follows: 

Each system is based on the theory put forward in a paper published by a certain 

author in a given year.  The name of the system begins with the first letter(s) of the 

surname of the author(s) of the paper.  This is followed by the year of publication of 

the paper.  E.g. ME88 is the system based on the 1988 paper by Larry Matthies and 

Alberto Elfes.  If the system features modifications/improvements on the original 

theory, its name is followed by mod. 

 

The systems designed are as follows.  

System Name Description 

ME85 Based on the map-building methods described by Moravec and 

Elfes in 1985 [46].  It contains the following features: 

• Two-dimensional gaussian sonar model. 

• Ad hoc mathematical map update method. 

• Not based on probability theory. 

• Bias towards favouring freespace readings over surface 

readings. 

 See Chapter 2 for further information 

ME85mod Similar to ME85, but with the following modifications. 

• Feature prediction is used to identify specular readings 

• Improved Dynamic Mixture Model used to identify specular 

readings from previous information gathered. 

• No bias towards freespace readings. 

ME88 Based on the system designed by Matthies and Elfes in 1988 [42].  

It contains the following features: 

• Two-dimensional gaussian sonar model identical to ME85. 

• Bayesian mathematical update procedure. 

• Based on probability theory. 

See Chapter 2 for more information. 



 133 

ME88mod Similar to ME88, but with the following modifications: 

• Feature prediction is used to identify specular readings 

• Improved Dynamic Mixture Model used to identify specular 

readings from previous information gathered. 

K97 Based on the system designed by Konolige in [33].  It contains the 

following features: 

• Sonar model based on the normal distribution. 

• Probabilistic mathematical map update methods based on 

Bayesian theory and log odds formulae. 

• Pose buckets used to discard duplicate readings. 

• Simplistic Dynamic Mixture Model used to identify/discard 

specular readings based on previously gathered information. 

• Conservative approach taken towards obstacle detection – 

biased towards detecting obstacles rather than freespace 

regions. 

K97mod Similar to K97, but with the following modifications: 

• Feature prediction is used to identify specular readings 

• Improved Dynamic Mixture Model used to identify specular 

readings from previous information gathered. 

• Less biased towards obstacle detection than K97. 

Fig 4.4 Outline of the features of each of the six map building systems developed for this 

thesis. 

 

4.4 Architectural Modules 

The systems outline above are comprised of, and interact with, a number of different 

modules.  The modules developed were: 

1. Grid3D: The Grid3D class handles storage of the map, and is used by each 

map-building system being tested.  Handles general grid/map storage 

organised in a 3D lattice.  Performs memory management for a map, growing 

the map to whatever size required, while at the same time only consuming the 

necessary amount of resources.  



 134 

2. GridMap: The GridMap class inherits from the Grid3D class, and add extra 

functionality to it, such as blurring, performing comparisons between maps, 

and converting the feature-based maps used by Saphira into grid-based maps. 

3. PoseBucket: A C++ class that contains a Grid3D class.  Rather than containing 

probability values in a Cartesian map like GridMap, it contains a list of 

Boolean values for each Cartesian point in the map stating whether or not a 

sensor reading has been received for that cell from a given angle at a given 

distance.  The angle resolution and distances are user definable, but the values 

used in Konolige’s work [33] are 60 different possible angles (Konolige 

actually uses 64 angles), and three possible distances.  This gives 180 Boolean 

values for each Cartesian coordinate in the map. 

4. RobotServiceController: A C++ class to interface with Saphira, take in the 

readings from the sensors, and pass them along to whichever robot services it 

is currently interfacing with. 

5. CommandClient: A program used to interface with the RobotServiceController 

class in order to allow the user to interface with the dynamically linked library 

in Saphira.  This enables the tester to tell the RobotServiceController to load 

map systems and to pass along commands to them, such as to blur the map, 

save the map etc. 

6. ServiceControl: An abstract base class that enables clients, for example the 

RobotServiceController object, to register with a service, and enqueues the 

readings sent from the client for further processing by the services that inherit 

from it. 

7. Mapping: A C++ class that contains all the functions and attributes common to 

all map building systems.  These include geometrical calculations like 

determining if a point is within the sonar beam, as well as containing the 

primary map used to store the model being built.  This class is also responsible 

for performing callbacks to the client of the service, notifying them of changes 

in the map. 

8. ME85: A C++ class that updates a map using the methods developed down by 

Moravec and Elfes’ 1985 paper [46]. 

9. ME85mod: A modified version of ME85, with additions made for this research 

to compensate for certain shortcomings in the original model, such as the grid 



 135 

update procedure, and the assumption of perfection in the sensors.  This is 

explained later.  

10. ME88: A C++ class very similar to ME85.  It accepts sonar readings from a 

client and processes them, but instead of using Moravec and Elfes’ grid update 

procedure, it calculates the prior and posterior probabilities of each cell using 

Bayes theorem, as described by Matthies and Elfes in their 1988 paper. See 

Chapter 2 or [42] for more information.   

11. ME88mod: A C++ class identical to ME88, but with one of the modifications 

mentioned in ME85mod added – modelling the imperfection of the sonar 

sensors using an improved dynamic mixture model.  See Fig 4.4 for more 

detail. 

12. K97: A C++ class that implements the system described by Konolige’s 1997 

paper [33].  It uses another module, PoseBucket, a modified version of 

Grid3D, to implement Pose Buckets (see Chapter 2). 

13. K97mod: A C++ class very similar to K97, but with modifications added to 

solve certain problems, for example requiring correct non-noisy readings at a 

cell before noisy readings can be recognised, as well as a modified Dynamic 

Mixture Model. 

14. SpecularEstimator: This child of the ServiceControl class implements the 

Feature Prediction algorithms described in chapter 3.  It predicts the position 

and orientation of obstacles in the environment based on the sonar readings 

and uses these hypotheses to calculate a confidence measure of the accuracy of 

the sonars readings. 

PlanPath: This object plans a path between two points in a given static map using a 

modified version of the A-Star algorithm. 

 

4.5 Grid3D Class 

The Grid3D class is a template class, used to store a collection of objects in a 

Cartesian grid.  For the purposes of storing a map, the type of objects it stores are 

numbers of type double.  This grid can be either in two dimensions or three 

dimensions, and extends to be as large as the user needs.  The grid is comprised of a 

set of objects called GridBlock, which can be thought of as a miniature grid which, 

once initialised, is fixed in size.  Each GridBlock contains links to six other blocks, to 



 136 

the north, south, east, west, above and below it, as well as knowing its own position in 

the global map. 

   

The Grid3D class manages these GridBlocks, arranging them in a linked list.  The 

grid has a given size, and when the user attempts to set the value of a position outside 

the grid, it automatically grows itself to encompass the new point.  The Grid3D does 

this by creating new GridBlocks and linking them onto the edge of the grid in the 

direction of the required point.  For example, if the map were of size 1000 x 1000 

with x in the range [-499, 500] and y in the range [-499, 500], using GridBlocks of 

size 100 x 100,  

and the user tried to set the 

value of grid position (150, 

750) which is north of the 

existing grid, two extra rows 

of GridBlocks would be 

added to the north, each row 

growing the grid by 100 

squares in the northerly 

direction.  This means that 

the map may not always be 

square shaped, but it will always be rectangular.   

 

While Saphira does contain its own class for storing a grid, SfGrid, it is preferable for 

the implementation to be both simulator-independent, and also be efficient and 

extensible.  The Grid3D class is portable to any simulator that supports C++ or Java, 

and can even be used independently of any simulator for many other purposes that 

may only be distantly related to robot simulation.  This class also acts as a parent class 

to the GridMap class, which adds extra functionality to the grid (Fig 4.5). 

 

Fig 4.5 Grid3D package containing the gridmap class, 

mapblock class, and external object WorldFileLexer. 

 



 137 

 

4.6 GridMap Class 

The GridMap class is a specialisation of the Grid3D class, i.e. it adds new 

functionality to the basic grid-managing abilities already in place.  This is used to 

store a two dimensional grid of objects, for example floating point numbers in the 

case of storing a certainty grid, as well as perform certain manipulations on this data.  

These include adding lines to the map, comparing one map with another to find a 

 

Fig 4.6 Grid3D Class. 

 

Fig 4.7 GridMap class, which inherits from Grid3D. 

 



 138 

fitness match, shrinking the map, importing maps stored in a Cartesian point format, 

and blurring the map using both box-blurring and gaussian blurring techniques. 

 

4.7 PoseBucket Class 

The PoseBucket class contains a class of type Grid3Dquad, which is essentially the 

same as the class Grid3D, except that it stores a three dimensional grid in a quad tree 

representation.  The PoseBucket class is used by map building systems based on 

Konolige’s [33] papers to record whether or not a previous reading was received from 

a particular point at a particular angle, as well as by ME85mod and ME88mod.  

 

As explained in section 2.11, Konolige uses pose buckets to prevent more than one 

range reading from the same position affecting a particular cell in the same way – this 

means that only one reading from a given pose can claim that a cell is occupied, and 

one reading can claim that it is empty.  This is achieved by taking in a sonar reading, 

checking if a reading from this position and angle, or pose, has already been used to 

update the current cell as being either occupied or empty.  If it has then the current 

reading is discarded.  If a reading has not been received from this pose, a flag is set in 

the PoseBucket stating that no more readings from this pose can affect this cell in the 

same way.  Any given square in the grid can be accessed using three coordinates, x, y, 

and height.  The x and y represent the position of the robot, and the height coordinate 

represents the angle the robot was facing when this reading was taken.   

 

Fig 4.8 PoseBucket class  

 

The PoseBucket class offers three operations to the user, getVal, setVal, and reset.  To 

mark the cell as being previously updated or to check it’s value the user gives the 



 139 

coordinates of the cell in Cartesian coordinates and the pose of the sonar sensor.  The 

distance and angle of the robot to the cell are calculated and the corresponding cell in 

the three dimensional map is updated or returned respectively.  The PoseBucket object 

can be instantiated with up to three different divisions of distance and with as many 

divisions of angle as needed.  Therefore with the settings of sixty divisions of angle 

and three divisions of distance, 180 Boolean values must be stored for every cell in 

the map being generated. 

   

In the experiments performed for this thesis, the area surrounding each cell is divided 

into sixty different angles and by the areas ≤0.5m, ≤1.5m and >1.5m, similar to Fig 

4.9.  For any single cell, if two different readings that cause it to be altered have 

originated from the same range of angles and the same distance range, then all 

readings except the first 

will be discarded. 

 

In this diagram the numbers 

1 through 6 represent 

different positions that 

readings have been received 

that affected the cell at 

position (x,y).  Readings 2 

and 3 duplicate each other 

since they both came from 

between 50cm and 1m from 

the robot, and from between 

42 and 46 degrees from it. 

Readings 4 and 6 do not 

duplicate each other as they 

come from sufficiently different angles even though they are both in the same distance 

bracket. 

 

One problem with using pose buckets is the prohibitive amount of memory required 

for any map of non-trivial size.  For each cell in the actual map, the PoseBucket stores 

(number of angles * number of distances) values.  This means that when using the 

 

Fig 4.9 Dividing the area surrounding each cell in a Pose 

Bucket by degrees and distance from the cell. 

 



 140 

values presented above, there are 60 * 3 = 180 values stored for each cell in the map, 

as well as the occupancy value stored in the map itself.  Using the standard method of 

storing a grid map, where every cell in the map has a corresponding pose bucket of 

180 values, the amount of memory required can be in the hundreds of megabytes. 

 

To combat this performance hit, the PoseBucket class is implemented as a quad tree, 

as described in section 2.5 (see Fig 2.4(c)).  This means that the amount of memory 

stored in the map is proportional to its complexity, since memory is only requested for 

a cell if it is necessary to store information in it, otherwise a default value is returned.  

Because of the quad-tree approach taken with the PoseBucket class, it is possible to 

scale up to very large maps even on a standard desktop computer. 

 

4.8 RobotServiceController Class 

The RobotServiceController class fulfils the following roles: 

� Receives the sonar readings from the robot. 

� Draws the map on the Saphira window.  

� Accepts commands from the user via socket-based communication through the 

Command Client 

� Registers with the service(s) requested by the user, for example the ME85, 

ME85mod, ME88, ME88mod, K97 and K97mod map building systems. 

� Passes the sonar readings to all active services for them to use however they 

deem appropriate. 

� Accepts callbacks from the running services which are used to update the local 

copy of the map, which is then used to draw the generated map on Saphira’s 

window. 



 141 

 

Fig 4.10 RobotServiceController class interacting with Saphira and 

the Mapping and Localisation classes. 

 

The RobotServiceController class realises the MapUpdateInterface interface, 

meaning that it contains a function called updateLocalCopy.  This is called by the 

map building services the class has registered with as a callback to update the local 

copy of the map.  This is necessary, as in a distributed environment the network 

overhead of having to request the entire map to be transmitted every 100ms for real-

time visual feedback would be too great.  Instead, a local copy of the map is kept, and 

this is updated incrementally by the service that is building the map using the 

updateLocalCopy callback function.  Of course, it is only necessary to keep a local 

copy of the map if real-time visual feedback is required – otherwise this is an 

unnecessary overhead, and no incremental updates are carried out. 



 142 

 

Fig 4.11 RobotServiceController class 

 

4.8.1 Interface To Saphira 

Saphira interfaces with the class through four functions: 

� sfLoadInit(), an external function called by Saphira that invokes the class and 

links it to the Saphira application. It is similar to the function main in a simple C 

program.  

� fire(), which is called by Saphira once every clock cycle, usually every 100ms 

though this is adjustable.  This is used to execute all of the real-time operations 

of the system, with the exception of the graphical output. 

� invoke(), a static function which returns a new instance of the class.  This is 

called by sfLoadInit() when the dynamic library is loaded into Saphira. 



 143 

� draw(), which is called once every clock cycle to draw to the Saphira window.   

  

The first two functions must be present in every coherent unit of functionality in the 

system.  The draw() function must be present if the behaviour is required to draw 

objects on the Saphira window.  The invoke() function can take any name, but there 

must be a static function in the each object registered with Saphira that creates an 

instance of that object.   It is merely convention to call that function invoke. 

 

4.9 ServiceControl Class 

This class standardises the registration procedure for all services in the robotics 

framework.  To this end, the ServiceControl class contains a function registerClient, 

which a client calls to register with the service and to receive a client number which 

must be used whenever sending sonar readings to the service.  This function also 

requires the client to tell the service about the configuration of its robot, the positions 

of the sensors, the size of the robot, the width of the sonar beam, as well as providing 

a reference back to the client in order for the service to perform a callback to the 

clients.  In the case of the mapping services the callback is used to update the clients 

local copy of the map. 

 

Once the client has registered with the service, it continually sends data to the service.  

This data can take two forms: 

• Robot pose information and sonar range readings can be sent to the service 

using the pushSonar function call.  

• Robot pose information, with no sonar range information, can be sent to the 

service using the pushPose function call.  This capability was provided for 

services that do not require sensor range information, such as recording the 

path a robot took, as well as services created by others in the UL Robotics 

Group that perform pursuit and evasion strategies. 

The service takes the data from the client and places it in a queue.  A separate 

function, processQueue(), must be defined by the child class to pop the client 

information off the queues and process it in whatever way the specialisation (e.g. 

ME85 or ME88mod) of the class requires.  For example, the ME85 class simply takes 

the reading and passes it to the updateMap function, but the ME85mod class will pass 



 144 

the readings to the SpecularEstimator class first to ascertain its confidence in the 

accuracy of the sonar’s readings.  The processQueue function can either run in a 

separate thread, in parallel with the client for non real-time applications such as map 

building, or can be called every time another reading is pushed onto the queue for real 

time applications such as SpecularEstimator.  ServiceControl handles all the 

threading issues, such as creating and destroying threads, as well as mutually 

exclusive access to shared data.  

 

As service must define its own particular method of dealing with the sensor readings, 

and therefore the processQueue is a pure virtual function (i.e. it has no definition in 

the class ServiceControl), making ServiceControl and abstract base class.  This means 

that it is impossible to declare an instance of the class ServiceControl without another 

class inheriting from it, so it cannot be used in isolation from ME85, K97 etc. 

 

 

Fig 4.12 ServiceControl class. 

 



 145 

4.10 Mapping Class 

As can be seen in Fig 4.11, the Mapping class is a superclass of each of the six 

mapping systems tested during this research.  It contains the operations and attributes 

common to all of the map-building systems.  These include some mathematical 

functions, such as getDist, and getDiffInAngle, as well as other operations common in 

the map building domain, such as transformSonar, getSonarBoundingBox, isInArc 

and isInRobot. 

 

The class also provides some public functions for use by the client, such as the ability 

to save and load the map, to add a line to the map, as well as to import a map in the 

format used by Saphira – storing maps as a series of points, with each point 

representing the end of a wall. 

 

Fig 4.13 Mapping class, parent of all the map-building system classes. 

 

 



 146 

4.11 ME85 map-building system 

The ME85 class is a map 

building system written for 

this thesis that accepts sonar 

readings from a client, 

models the sonar sensors, 

then integrates the readings 

with previous readings to 

generate a map of the region 

that the clients robot is 

exploring.  It uses the logic 

and equations presented in 

Moravec and Elfes 1985 

paper, High Resolution Maps 

From Wide Angle Sonar [46].  

As mentioned in Chapter 2, the mapping theory put forward by Moravec and Elfes 

advises storing the probability of occupancy or emptiness as a number in the range [-

1,1].  They also advise maintaining three maps, one, Occ, for the occupancy 

probability in the range of [0,1], another, Emp, for the empty probability in the range 

of [0,1], and one, Main, which is built from the other two maps as follows: 

If, for a particular point (x,y): 

• Occ(x,y) >= Emp(x,y), then our main map, Main(x,y) = Occ(x,y). 

• Emp(x,y) > Occ(x,y), then Main(x,y) = Emp(x,y) * -1. 

This means that if it is more likely that a cell is occupied than unoccupied, it is 

marked as occupied. Conversely, if the probability that the space is empty is greater 

than the probability of it being occupied, the main map is updated with the empty 

value multiplied by minus one.  The map therefore contains numbers in the range [-1, 

1].  This indicates that as the value of Main(x,y) approaches 1, the greater the chance 

that that point is occupied.  As it approaches -1, the greater the chance that the point is 

unoccupied.  If the value is around zero, then little or nor information exists to 

distinguish the cell as either occupied or unoccupied. 

 

 

Fig 4.14 The ME85 class integrating with the GridMap, 

Grid3D, Mapping and GridBlock classes. 

 



 147 

 

Fig 4.15 ME85 class. 

 

4.11.1 Updating The Map 

When it comes to adding information to the map from a set of sonar readings, the first 

step is to decide which points might possibly need updating.  The most obvious, and 

most inefficient, way of doing this is to check each point in the map to see if it is 

within the arc of a given sonar with the isInArc() function, and updating its value if it 

is. 

Unfortunately, in a complete map of n*n points, this leads to an O(n
2
) running time 

for each sonar.  A much quicker way to 

do this is to model the space covered by 

the sonar with a bounding box around 

the arc, giving a minimum and 

maximum X and Y in which to search.  

This box encompasses all points that are 

inside the arc, and some that are outside, 

as seen in Fig 4.16.  This brings the 

running time down to 

O((maxRange*2)
2
), where maxRange is 

the maximum range of the sonars.  For 

example, if the maximum range of a 

sonar is set at 2.5 metres, and each cell 

is 10mm by 10mm in size, then the 

maximum number of cells that must be 

operated on for that sonar is 25 * 25 = 

625.  This is considerably smaller than O(n
2
), and is also very pessimistic, as the 

 

Fig 4.16 Bounding box around a sonar arc, 

representing a fragment of the real map.  

 



 148 

running time does not approach this upper bound on a Pioneer 1 robot, even when in a 

completely empty space. 

 

With the bounding boxes in place, the updateMap function iterates through the points 

inside the box, taking steps of 100mm at a time.  This means that the map is made up 

of squares, each 100mm to a side.  If a point is in the unoccupied area of the map, that 

is the area between 0 plus the error and the range reading minus the error (Fig 4.17), 

then Moravec and Elfes advise to update the Empty map with the simple formula: 

 Emp(X,Y) = Emp(X,y) + Empk(X,Y) – Emp(X,Y) * Empk(X,Y) 

 

In the above formula, the value of the 

new Empk(X,Y) is inversely 

proportional to the distance from the 

central beam and the distance from 

the sonar.  This gives a gaussian 

spread from the point of origin.  The 

formulas to derive it can be found in 

Chapter 2. 

 

If a point is inside the occupied area of the arc, i.e. the area covered between the range 

reading taken less the expected error and the range reading plus the error (Fig 4.15), 

the update is a little more complicated.  

 

First we must Cancel the occupied reading: 

 Occk(X,Y) = Occk(X,Y) * (1 – Emp(X,Y)) 

to account for the fact that previous readings disagree with this one.  This means that 

if previous readings said that this space was empty, then we are less inclined to 

believe readings that say it is occupied.  Next we Normalise the occupied value to 

sum to one, as we are making the assumption that there is a single target in the 

occupied area (which Konolige[15] later improved upon with his MURIEL method).  

Finally, we Enhance the prior occupancy value with the new value, as in the Empty 

map. 

 Occ(X,Y) = Occ(X,Y) + Occk(X,Y) – Occ(X,Y) * Occk(X,Y) 

 

 

Fig 4.17 Occupied (shaded) and unoccupied 

areas of a sonar arc. 

 



 149 

4.12 ME85mod Map-Building System 

The ME85mod class is similar to the ME85 class in that it is a child of the Mapping 

class and updates its map using the theory laid down by Moravec and Elfes, but it also 

contains certain modifications not mentioned in Moravec and Elfes paper.  These 

issues with the original theory and the solutions applied to them and are explained 

below. 

 

4.13.1 Problem 1 – The Cancel Step Used In Updating the Map Is Biased 

Towards Freespace Readings 

A major problem with the approach taken by Moravec and Elfes in [46] was their 

assumption that the sensors were perfect, or at least that if there was an obstacle in the 

beam of the sonar that it would reflect diffusely back to the sensor.  As stated in 

Chapter 2, this is certainly not the case, as we often see specular reflection playing 

havoc with the readings.  This assumption led to the creation of a map update strategy 

that did not allow for the fact that a freespace reading could be erroneous, and 

therefore if a sonar sensed an obstacle, before this information was integrated into the 

map the degree to which the map would be updated is reduced by the probability that 

the cell is unoccupied. 

 

Unless the obstacle is either rough in texture or close to perpendicular to the sensor, 

the sonar beam either rarely echoes back to the source, or it comes back after multiple 

reflections, both of which are completely useless and contain no information about the 

relative location of the obstacle (see Fig 2.9).  Even worse, it contains misinformation, 

claiming the space to be empty.  Because of this misinformation, the update formula 

for the Empty map is inadequate.  The function is monotonically increasing i.e. it 

never decreases, and the value it generates is later used to decrease the certainty of the 

Occupied cell, in the Cancelling step.   

 



 150 

Once enough incorrect readings have been received, no amount of correct readings 

can reverse the error, for as Emp(X,Y) approaches 1, Occ(X,Y) is multiplied by (1 – 

Emp(X,Y)), which approaches zero. This is not a symmetrical update procedure, 

which the authors explain by stating that the occupied area represents a single 

occupied cell, while the unoccupied area represents each cell being unoccupied, as 

any occupied cell in that area would have caused a reflection.  This only explains the 

Normalisation step, however, and not the Cancelling, which favours a cell being 

empty rather than occupied.  If anything, the balance should be in the other direction, 

as it is usually better to err on the side of caution than to not recognise an obstacle in 

the robots path.   

 

To this end, the Canceling step was removed from the Occupied cell update 

procedure, and a modified version of Konolige’s Dynamic Mixture Model was used.  

This is fully explained in section 4.17.  Essentially this means that if just one cell in 

the freespace part of the sonar beam has a high probability of occupancy, then the 

range reading is assumed to be noisy, and the effect of the reading on the map is 

significantly weakened. 

 

Fig 4.18 The ME85mod class 

 



 151 

4.13.2 Problem 2 – Specular Readings Often Cannot Be Detected Directly From 

Historical Data  

The above alteration to the basic map building algorithm has a weakness in that it 

relies on receiving enough correct readings to cancel out the bad readings.  

Unfortunately this rarely happens.  Take for example a robot travelling straight down 

a corridor.  The sonars along it’s front do not detect the walls to either side of due to 

the angle between them.  The side sonars should detect the wall correctly.  However 

there will be many more specular readings than correct readings since as the robot 

approaches any particular position in the wall it will accumulate many incorrect 

readings for its corresponding cell from its front sonars, and only receives relatively 

few correct readings from its side sonars as it passes the cell.  The resulting 

probability of occupancy of the cell will be low. 

 

Konolige went some way towards solving this problem with his pose buckets.  Using 

pose buckets prevents multiple readings from similar poses affecting the same cell.  

Pose buckets were therefore used with ME85mod and did improve the resulting map 

somewhat.  However experiments showed that pose buckets on their own were not 

enough since there are many more positions the robot can be in in relation to a wall 

that will yield specular readings than positions that yield correct readings.  It would be 

better if the specular readings could be identified as soon as they were received and 

thus ignored.  Konolige claims his MURIEL method can do this, but it is flawed in 

that it needs good readings at a cell before it can identify new readings as being 

specular.  As it is often the case, as in the corridor example above, that many incorrect 

readings are received before any good readings, most of the specular readings are still 

incorporated into the map. 

 

This chicken-and-egg problem means that in order to compensate for specular 

readings without prohibitively expensive recomputation of previous readings it is 

necessary to make predictions regarding features in the environment that the robot has 

not sensed yet.  To this end the SpecularEstimator service is used with ME85mod to 

create a local map around the robot built from features it predicts from the sensor 

readings using the Feature Prediction algorithm described in Chapter 3.  It then uses 

this map to detect specular readings.  The SpecularEstimator module is discussed in 

greater depth later in the chapter.  Due to the fact that the SpecularEstimator only 



 152 

stores a local map of the area surrounding the robot, when the ME85mod is being used 

by multiple robots simultaneously it will need a separate SpecularEstimator for each 

robot.  To this end it redefines the registerClient function from the ServiceControl 

class to ensure than whenever a client registers with this class, it automatically 

registers with a new SpecularEstimator class also. 

 

4.14 ME88 Map-Building System 

The ME88 class is very similar to the ME85 class.  It is based on the theories put 

forward in Matthies and Elfes 1988 paper [42].  It is a child of the Mapping class, and 

has all of the same functions as ME85.  The chief way in which it differs is in how it 

integrates new sonar readings with prior information.  Rather than using the formulas 

P(EMP|R) = P(EMP) + P(R|EMP) – P(EMP) * P(R|EMP) and 

P(OCC|R) = P(OCC) + P(R|OCC) – P(OCC) * P(R|OCC) 

from ME85, a new Bayesian update formula is used.   

 ( ) ( ) ( )
( ) ( ) ( )( ) ( )( )OCCPOCC|RPOCCPOCC|RP

OCCPOCC|RP
R|OCCP

−−+
=

11
 

Here, P(OCC) and P(EMP) are the prior probabilities of the square being occupied 

and empty respectively.  P(R|OCC) and P(R|EMP) are the probabilities of getting the 

range reading R given our prior belief that it is occupied and empty respectively.  This 

is our model of the sonar, using the gaussian noise model described in section 2.8.1.  

P(OCC|R) is the posterior probability, that is the probability of the square being 

occupied after the range reading has 

been integrated into the model.  See 

section 2.8.2 for more information on 

this.  

 

Whereas in ME85 three maps must 

be maintained, a map storing the 

occupancy values of the cells, a map 

for the freespace values and a map 

combining the other two maps, in 

ME88 only a single map needs to be 

stored.  This stems from the fact that in the formula presented above, Emp(X,Y) = 1 – 

 

Fig 4.19 ME88 class, interacting with Grid3D, 

GridMap, Mapping and GridBlock classes.  

 



 153 

Occ(X,Y).  The values in this map have a range of [0,1], with 0.5 representing 

unknown, i.e. if a square has a value of 0.5, we don’t know if it is occupied or not.  If 

it has a value of 0, it is empty, and if it is 1 it is occupied. 

 

 

Fig 4.20ME88 class definition.  The vast majority of 

processing takes place in the updateMap function, which 

integrates a set of sonar readings with the map being 

generated. 

 

The ME88 class also integrates positional uncertainty into its model.  It takes a 

measure of how certain it is of its current position and orientation, between zero and 

one, and integrates it with P(R|OCC) using the Bayesian update formula.  It receives 

this measure from the client, who may also interface with a localisation service and 

will then be able to receive a value representing the probability that the robot is in any 

given pose, which it then passes on to the ME88 module. 

 

4.15 ME88mod Map-Building System 

The ME88mod mapping service is similar to ME88 in many ways. It contains just a 

single map, uses the same Bayesian update rule and integrates positional uncertainty 

into the model.  In addition it uses the SpecularEstimator class to identify specular 

readings, as well as the PoseBucket class to remove redundant readings, as with 

ME85mod. 



 154 

 

Fig 4.21 ME88mod mapping service using the SpecularEstimator service, as well as 

PoseBucket and GridMap objects 

 

ME88mod also employs the same modified version of Konolige’s Dynamic Mixture 

Model as ME85mod and K97mod.  This is fully explained in section 4.17.  

 

 

Fig 4.22 ME88mod class definition.  It contains two sets of pose buckets, one for freespace 

readings, one for surface readings.  The object of type SpecularEstimator, specEst, performs 

feature prediction.  The registerClient function inherited from the ServiceControl abstract base 

class via the Mapping parent class is redefined here.  This is to ensure that each time a new 

client registers with the service, they are automatically registered with an object of type 

SpecularEstimator, as each client must have their own object for Feature Prediction. 

 

 

 



 155 

4.16 K97 Map-Building System 

The K97 mapping service uses the 

map building theory from 

Konolige’s 1997 paper [33] 

Improved Occupancy Grids for 

Map Building.  Similar to the 

ME85 service, it uses three grids to 

store the map.  One, occMap, 

stores the values for each cell 

which a sonar reading claimed to 

be occupied.  Another map, 

emptyMap, stores the values for each cell that sonar readings claim to be empty.  

These two maps are combined and the result is placed in a third map, myMap, which 

is inherited from the Mapping class.  The formulas and theory behind the methods 

used in the updateMap function were previously explained in chapter two. 

As explained in chapter two, the application of Konolige’s sonar model is based on 

statistical normal distribution, which is stored in a table, and can be used to calculate 

the area beneath a normal curve in a two dimensional graph.  The 

calcNormalDistribution function is used for this purpose. 

 

Fig 4.24 The K97 map building service.  K97 inherits from Mapping, which in turn is a child of 

the ServiceControl class.  K97 contains three GridMaps, one inherited from Mapping and two 

of its own.  It also contains two PoseBuckets, one for freespace readings, one for occupied 

readings. 

 

K97 contains two pose buckets, poseBucketOcc and poseBucketEmp.  The former 

ensures that each cell can only be updated as occupied once from any given pose of 

 

Fig 4.23 K97 mapping service class definition. 



 156 

the robot, the latter ensures that each cell can only be updated as unoccupied once 

from a particular robot pose.  Using these pose buckets prevents multiple incorrect 

readings accumulating at a cell when the robot receives many erroneous specular 

reading from similar poses.  This obviously is advantageous, and leads to better maps 

being generated.  Unfortunately, while multiple incorrect readings are prevented, one 

incorrect specular reading from each position is still incorporated into the map.  It 

would be better if these noisy readings could be identified and discarded. 

 

Konolige’s dynamic mixture model is a method for doing just that.  It uses previously 

generated map information to estimate the specularity of new sonar readings.  As 

discussed in chapter two, this has the drawback that correct sonar readings must be 

received before noisy readings can be identified, and if noisy readings are received 

first then this method does not work very well.  However, when correct readings are 

received first, this works quite well, and overall helps create better maps than if it 

were not used. 

While K97 contains some variable constants which can be tuned for different 

environments, the K97 mapping service is intended to be as close to Konolige’s 

original system as possible, and as such all of his settings are used where possible.  

The value sλ is set to 1.5, meaning that once the occupied value of a cell reaches 1.5 it 

is completely believed to be occupied, and all readings that later report the cell to be 

empty are believed to be 100% noise.  Each PoseBucket allows a cell to be updated 

from a particular angle three times, and from three different distances.  [33] never 

specifies what value 

F - the probability of 

an object existing in 

the sonar beam at a 

distance other that the 

range measured - 

takes, merely 

referring to it as a 

‘small constant’, so a 

value of 0.05 was 

assigned to it. 

 

Fig 4.25 The K97mod map building service. Similar to K97 

service, but the addition of the SpecularEstimator service. 

 



 157 

4.17 K97mod Map Building System 

The K97mod map building service is similar in many respects to K97, insofar as it 

uses the sonar model described in [33], uses three GridMaps, two PoseBuckets, and 

combines the occupied and freespace maps using the formulae specified by Konolige.  

However, it also alters the basic algorithm, as well as using the SpecularEstimator 

class to better identify and discard noisy specular readings. 

 

4.17.1 Problem 1 – Probability of Specularity For A Single Sonar Reading is 

Independent From Cell To Cell 

One of the criticisms Konolige made of his MURIEL method’s dynamic mixture 

model was that the probability of specularity, P(S), was computed for each cell based 

only on the surface readings at that cell.  This means that for any one sonar scan, 

some cells may give a high P(S), while others, with fewer surface readings, may give 

a low P(S).  It can be argued that once a single cell claims the reading to be specular, 

no other cell should be able to claim that it is a correct reading – all that is to be 

decided is the probability of specularity of the beam, and this value, at the very least, 

should be applied to all cells in the beam.  To this end, an initial conservative 

approach was taken so that the highest value of P(S) of all the cells in the freespace 

part of the beam is applied to all cells in the beam.   

 

Fig 4.26 K97mod mapping service class.  The registerClient function 

from the ServiceControl class is redefined so that every new client of the 

class is automatically registered with a SpecularEstimator class at the same 

time.  As the SpecularEstimator class maintains a local map for the robot, 

there is a separate one for each client of the K97mod mapping service. 



 158 

When this method of calculating P(S) was applied and tested it performed 

considerably better than the original method.  However it was observed that many 

readings from the front sonar, which seemed to be correct, were discarded when the 

robot was travelling parallel to a wall, for example when performing wall following in 

a corridor.  This issue came from the fact that, since the P(S) from one cell is applied 

to all cells in the beam, the possibility exists that extreme parts of the sonar beam may 

not give a correct return range reading from an occupied cell.  This could occur for a 

number of reasons.  One possibility is that the object is smooth and the beam reflected 

off at an angle such that it didn’t return to the sensor.  Another possibility is that the 

strength of the beam is so weak at that distance that it reflected properly but dissipated 

before returning to the sensor.  A third 

possibility is that the cell is not really 

occupied and some previous readings were 

inaccurate or interpreted incorrectly.  For 

whatever reason the modelled sonar beam is 

inconsistent with previous surface readings, 

giving equal weight to the P(S) of cells far 

from the sonar emitter and to the P(S) of cells 

near the robot causes many readings to be 

given overly-weak freespace updates.   

 

For example, in Fig 4.27(a) the extreme edge 

of the sonar beam passes over a cell with very 

high occupancy, giving it a probability of 

specularity P(S) ≈ 1.  If this probability is 

applied to the whole beam, the reading will 

more or less be discarded.  Robots exhibiting 

a wall-following behaviour would discard 

many readings from their front sonars despite 

the fact that they are more or less correct. It 

can therefore be argued that the beam still 

contains information, since the majority of 

the beam is correct, there are no obstacles in 

 

Fig 4.27 (a) Front sonar of a robot 

which is slightly inconsistent with the 

previously modelled map, with only an 

extreme edge of the beam overlapping 

an highly occupied cell. 

 

Fig 4.27 (b) Diagonal sonar of a robot 

which is very inconsistent with the 

previously modelled map, with an 

occupied cell in the freespace part of 

the beam, very close to the sonar 

emitter. 



 159 

most of the freespace area.  Compare this to Fig 4.27(b), where it would be better to 

strongly reduce the strength of the map update since the inconsistent high surface-

value cells are much closer to the sonar emitter and therefore affect a much larger area 

of the beam. 

 

For these reasons, when choosing the largest P(S) of all the cells in the beam, the P(S) 

of each cell is weighted by their distance from the sonar emitter and their angle from 

the central beam.  This is done using Konolige’s formula for the sonar model 

( )im CDrp =2
 - see chapter two for explanation of this formula.  This gives the 

weighted probability of specularity for each cell: 

 ( ) ( ) ( )im CDrp*SPSWP == 2  

The largest ( )SWP , ( )*SWP  is 

applied to every cell in the beam 

that has a ( ) ( )*SWPSP < , 

otherwise if the probability of 

specularity for that cell is greater 

than ( )*SWP  it remains unchanged. 

 ( ) ( ) ( )( )*SWP,SPmax'SP =  

 

4.17.2 Problem 2 – The Probability of Specularity Only Diminishes The Strength 

Of The Freespace Update, Not The Occupied Update 

A second issue with the original application of the probability of specularity in [33] 

was that it was only used to reduce the effect of the freespace update.  The update of 

the occupied cells was left unaffected, leading to ‘sonar shadows’ behind obstacles, as 

in Fig 4.28.  If a reading is specular, then its effect on the map should be reduced to a 

degree based on its probability of specularity, and this should be applied to both the 

freespace and occupied regions. 

 

The original method does not do this, as it uses the formula when merging the 

freespace and surface maps to create the overall map: 

 ( )( ) ( )( )SPSPfsT +−+= 1logloglog λλλ  

 

Fig 4.28 A typical corridor scene with ‘sonar 

shadows’ resulting from noisy specular 

readings 

 



 160 

where only the freespace update fλ is weakened by the probability of the range 

reading being specular ( )SP , while the occupied, or surface, update is incorporated 

into the main map at full strength, regardless of the value of ( )SP .  The formula in 

K97mod is changed to 

 ( )( ) ( )( ) ( )( ) ( )( )SPSPSPSP fsT +−++−= 1log1loglog λλλ   

in order to apply the same measures to the surface update as to the freespace update.  

This has lead to a marked decrease in the number of ‘sonar shadows’ behind walls, 

see Fig 4.28. 

 

4.18 SpecularEstimator Service For Feature Prediction 

The SpecularEstimator class is used by the ME85mod, ME88mod and K97mod 

mapping services to estimate the confidence that should be attributed to the sonar’s 

range readings.  It does this using the Feature Prediction methods laid out in chapter 

three. 

 

It is also possible for the client to add permanent features to the map if they are 

somehow certain that they exist using the putWall function, for example if a wall has 

been detected by some other sensor like a touch sensor or a laser. 

 

Fig 4.29 SpecularEstimator class. 

 

 



 161 

4.19 PlanPath Class 

The PlanPath class creates a path from one point to another on a static map using a 

modified A-Star algorithm.  The variant on the A-Star algorithm used in this class is 

explained in depth in Chapter 5, and will therefore not be covered here.  Suffice to 

say, this class can plan a path quickly and to near-optimality in a static environment.   

 

It is very robust at avoiding both local and global minima, unlike the standard A-Star 

algorithm.  The robot can be made keep a certain safe distance from obstacles using 

the setRobotRadius function.  It divides a path into a discrete set of waypoints, with a 

straight line of sight between each waypoint and the one before and after it.  Calling 

the generatePath function, passing the start and endpoints in Cartesian format as 

parameters, generates a path.  Waypoints can be retrieved using the getSubGoal 

function. 

 

 

Fig 4.30 The PlanPath Class implements a modified version of the A-Star path planning 

algorithm.  Line fitting methods are used to reduce the number of local minima, while an 

exploration strategy reduces the frequency and severity of global minima. 

 



 162 

Chapter 5: Benchmarking – What makes a good map? 

5.1 Introduction 

In order to accurately gauge the effectiveness of a map building technique, a 

comprehensive analysis of the maps produced by it must be undertaken.  In this 

chapter, a variety of such benchmarking methods are presented, each of which has 

been applied to the maps generated using the software systems described in Chapter 4, 

with the results presented in Chapter 6.  These benchmarking methods include: 

• An image comparison algorithm (Image Correlation [1]) 

• A direct comparison method called Map Scoring specifically designed for 

probabilistic maps [39]. 

• A modified version of the Map Scoring method that only tests the correctness 

of the obstacles in the map, ignoring the freespace areas 

• A benchmarking suite designed as part of this thesis called Path Comparison, 

which tests the usefulness of a map as a means of navigation rather than 

treating it as if it were a picture.  This bears some resemblance to a 

benchmarking technique developed by Thrun [58], which uses Voronoi graphs 

to convert a grid-based metric map into a topological map in order to compare 

the cost of paths generated in grid maps with the cost of paths generated in 

topological maps.  The approach taken here is more focused on examining the 

freespace and occupied regions of a map than the cost of the paths, and 

therefore differs considerably from Thrun’s approach. 

 

A paper detailing the benchmarking techniques presented in this chapter [14] entitled 

“Developing an extensible  benchmarking framework for map building  

paradigms” has been accepted for publishing in the Ninth International Symposium 

on Artificial Life and Robotics (AROB) 2004 in Oita, Japan. 

 

5.2 Traditional Approaches to Evaluating Map Fitness 

Two dimensional maps are, by their nature, relatively simple to visualise, and are 

intuitively easy for the human eye to examine and evaluate.  For this reason, many 

researchers have felt it sufficient to present qualitative results only [15, 33, 46, 59], 



 163 

often with little or no quantitive analysis being carried out.  For example, in Fig 5.1, 

given the ideal map of an environment (Fig 5.1(a)), it is quite easy to see that the map 

in Fig 5.1(b) is much less accurate than the map in Fig 5.1(c).  This can largely be 

attributed to the fact that map building is a relatively new field, and most researchers 

have opted to concentrate on developing new map building methods and rely on 

qualitative analysis rather than spend time creating a comprehensive suite of map 

benchmarking techniques.  

Fig 5.1 (a) The ideal map of 

an environment. 

Fig 5.1 (b) An inaccurate map 

generated by running a robot 

around the environment from 

Fig 5.1(a). 

Fig 5.1 (c) A more accurate 

model of the environment 

from Fig 5.1 (a) than Fig 5.1 

(b). 

 

Unfortunately, the human eye is easily deceived, and basing ones conclusions upon 

purely qualitative measurements can leave the results open to question.  Also, in fields 

where an exact measurement of the value of a map is required, for example the 

automated learning of a sonar model [57, 39], a fitness function must be used to 

evaluate the worth of the map created by the last iteration in order to guide the 

learning process in the future.  For these reasons it is necessary to have a good method 

of benchmarking the maps created by the map building software.  In the methods 

described below, the map being evaluated is compared to an ideal map of the 

environment, which was either taken from architectural drawings, or measurements of 

the real world environment. 

 

5.2.1 Cross Correlation Between Maps 

Given the aforementioned likeness of a two dimensional map to an image, it is 

possible to calculate the similarity between two maps, in this case the ideal map and 



 164 

the generated map.  A fitness measure of the map generated by the system is 

calculated using Baron’s cross correlation coefficient [1]: 

( )
( ) ( )TI

TITI
yC

T

TT

N σσ

−
=  

This is based on template matching, where CN(y) is the cross correlation coefficient, IT 

is the map to be matched, T is the original map being matched against, <> is the 

average operator which calculates the average value of all the freespace and occupied 

cells, and σ is the standard deviation over the area being matched.  The result of this 

comparison, CN, gives a percentage match figure that specifies the similarity of the 

two maps.  

 

One of the most important features of any image/map comparison algorithm is that of 

normalisation – the map in question must be normalised in some way to ensure that 

neither scale, rotation nor translation affect the outcome of the comparison.   

• The translation of all maps is made identical by anchoring both maps to same 

coordinate system, in this case both of their points of origin, position (0,0), are 

placed at Saphira’s origin.  In each of the experiments, the robot begins its run 

at the origin point.   

• The problem of differences in scale of the maps being compared is solved by 

only comparing the area covered by the smallest map.  After all, it wouldn’t be 

very fair to compare a map-building strategy’s abilities on an area it has never 

visited.  Both maps also must use the same measurement scale; in this case 

each grid cell is 10 by 10 millimetres.   

• The issue of differences in rotation of the maps being compared is resolved by 

initialising the robot with the same orientation at the beginning of each 

experiment.  This step was taken to simplify the map comparison methods 

necessary, and would not affect the quality of the map built, although 

localisation routines may be slightly more accurate as a result. 

 

The average, or mean, of a map M, is calculated using the following formula: 

 
numCells

m

M
Mm

Y,X

Y,X

∑
∈

=   



 165 

with all the values in the map mX,Y being added together and the result divided by the 

number of cells in the map, numCells.  The average of two combined maps, MN , is 

achieved in a similar manner, with each corresponding cell in either map being 

multiplied with the cell in the other map, then added to the total, which is finally 

divided by the total number of cells, n. 

 

( )

n

nm

MN
NnMm

YXYX

YXYX

∑
∈∈

= ,, ,

,, *

 

 

The standard deviation of a map can be calculated as one would expect, by subtracting 

the mean from each cell, summing these values, dividing by the number of cells in the 

map, and getting the square root of the result: 

 

( )

numCells

MS
MY,XS

Y,X∑
∈

−

=

2

σ  

 

Calculating the correlation coefficient between two maps is a relatively simple, quick 

procedure.  It will get similar results between two maps if robot odometry error causes 

obstacles to appear distorted in the generated map, for example a straight corridor will 

appear to be curved.  This is due to the fact that it factors the average and standard 

deviation of the map into the final result, as well as doing a cell by cell comparison.   

Herein lies the weakness of using correlation as a fitness measure for maps – it is very 

possible that an inaccurate map can appear accurate and vice versa since correlation 

takes into account the average cell value and standard deviation of cell value from the 

  

Fig 5.2 (a) Correlation can give a high 

percentage match to two maps even if they 

are quite different.  This is because they have 

a similar number of equally valued cells. 

Fig 5.2 (b) This corridor, curved due to 

odometry error, would have very high 

correlation with Fig 5.2a as it has an equal 

number of occupied and freespace cells. 

However, it is certainly not an very good 

match in reality. 



 166 

mean.  If two maps’ average values are similar through coincidence rather than by 

being very similar then they might be given a high correlation value (See Fig 5.2). 

 

Map correlation was implemented in the GridMap class discussed in Chapter 4, in the 

correlation function, and was applied between all generated maps and the ideal hand-

drawn map of the environment, with the results in Chapter 6. 

 

5.2.2 Map Score 

Martin and Moravec [39] developed a map comparison measure called Map Score in 

order to facilitate the automatic learning of sensor models.  Unlike correlation, map 

scoring compares two maps on a cell-by-cell basis, meaning that in order for it to give 

a meaningful result, the two maps must be in exactly the same position and 

orientation. 

 

Given two maps, M and N, the score between them is calculated as the sum of the 

squared differences between corresponding cells: 

 ( )∑
∈∈

−=
Yn,Mm

Y,XY,X

Y,XY,X

nmMatch
2
 

where mX,Y is the value of the cell at position (x,y) in map M and nX,Y is the value of 

the cell at position (x,y) in map N.  This formula gives a positive value representing 

the difference between the two maps, so the lower the number, the more alike the two 

maps are. 

 

This formula works well with the application for which it was designed, learning a 

sonar model, since the only requirement is to minimise the score/fitness on a single 

map.  However, this score is not normalised, so the score a sonar model receives on 

one map bears no relation to the score it may receive on a second map.  For example, 

on a small map with 1000 cells, a score of 500 would mean that for each cell in the 

ideal map, the generated map had an average difference of 0.5 – a huge error.  

Whereas on a large map of 1,000,000 cells, a score of 500 would mean that for each 

cell in the map there was an average error of 0.0005 – a very small error.  As the sonar 

models developed for this thesis have been tested on a variety of environments, it 

became necessary to change the Map Scoring method slightly to allow normalisation 

so results from one map could be compared with the results from all other maps. 



 167 

 

5.2.3 Normalising The Map Score 

This change involved finding the worst possible map that could be compared to the 

ideal map.  The ideal map only has three possible values, 0, 0.5, and 1, or empty, 

unknown and occupied respectively.  A naïve method of finding the worst map would 

be to set each empty cell to 1, each occupied cell to 0, and each unknown cell to either 

0 or 1 (it doesn’t matter which, both have a difference of 0.5).  This does not take into 

account that there are places in the map that the robot cannot go, for example there 

may be a large expanse of unknown area with no access to it.  It therefore makes 

sense to create the worst possible map of an environment based on where the robot 

can go.  This is done by setting the empty cells to 1, as above, but only change the 

value of an unknown or occupied cell if it is close enough to an empty cell to be 

detected if the robot happened to be at that empty location.  In the experiments 

undertaken, a maximum range distance for the sonar sensors was set at 2.5 metres, so 

only those unknown or occupied cells within 2.5 metres of an unoccupied cell are 

changed, from 0.5 to 1 and from 1 to 0 respectively. 

 

5.2.4 Testing Only Occupied Cells With Map Score 

Another weakness of the Map Scoring technique is that mapping algorithms that 

overestimate the empty regions of space and do not identify many obstacles can 

receive a better score than algorithms that identify obstacles much more accurately, 

but don’t make quite as strong a statement as to the emptiness of a region.  The reason 

for this is that in many environments, there are large amounts of unoccupied spaces 

with boundary wall, with perhaps a few small obstacles distributed within that space.  

This means that there are often many more unoccupied cells than occupied cells.  If a 

sonar model marks most cells as empty – not uncommon since bad sonar models are 

easily confused by noise and thus miss an obstacle – it is only slightly penalised since 

it computed the wrong value for a small number of cells.  Unfortunately it just so 

happens that those are the very cells we most wish to identify correctly. 

 

To redress the balance, a second score test is used that only compares the occupied 

cells in both maps.  For any two maps M and N, if either the value mX,Y >0.5 or nX,Y 

>0.5, then the squared difference between those two cells is added to the final score.  

Otherwise they are ignored.   



 168 

 

This method, in conjunction with the earlier method of comparing the complete maps 

against each other, has proven to give a very good indication as to the strengths and 

weaknesses of the sonar model used to build the map.  They can identify when a sonar 

model updates either the occupied or unoccupied spaces too strongly or too weakly.   

 

They also punish specular reflections that return a range reading and those that don’t.  

If a specular reading doesn’t return a 

range to the sensor causing an obstacle 

to not be identified, then both the first 

and second score methods will give a 

worse (higher) score.  Also, if a 

specular reflection returns a reading 

that is too long, usually from reflecting 

off multiple objects before returning, 

then a sonar shadow behind the 

obstacle is created.  In Fig 5.3, if the entire map were to be scored against an ideal 

map, then it would seem to be a very good map, since the freespace corridor is well 

identified and this makes up a large part of the map.  However when comparing just 

the occupied cells, we can see that there are many more occupied cells than there 

should be, and this is more clearly shown by the second score method. 

 

A similar test of the unoccupied areas was not carried out because sonars have very 

little trouble detecting open spaces, so comparing the two complete maps with each 

other gives a very similar result to what a test of just the unoccupied areas would. 

 

Unfortunately, the greatest strength of this method – being able to very accurately 

compare two maps on a cell by cell basis – is also it’s greatest weakness.  Because it 

relies on the two maps being in the exact same orientation and translation, this map 

matching method is only valid either in simulation with no odometry error, or with 

very effective localisation algorithms continually correcting the estimated position of 

the robot.  However, given these assumptions, it provides a very good indication as to 

the strengths and weaknesses of sonar models, feature prediction algorithms, the use 

of pose buckets etc. 

 

Fig 5.3 A typical corridor scene with ‘sonar 

shadows’ resulting from noisy specular 

readings. 

 



 169 

 

5.3 Benchmarking A Map Based On Its Usefulness To A Robot 

5.3.1 Introduction 

Most quantitive analysis presented on the grid maps focus on techniques similar to 

those discussed in the earlier part of this chapter – namely comparing the values in the 

cells to each other.  When training a sonar model in a small area this is quite a good 

approach to take, but to properly evaluate the worth of a map, one must get away from 

the idea of a map being like a picture, and ask the question “If a robot were to use this 

map, how well would it perform?” 

 

The purpose of a map is, after all, to enable a robot to get from point A to point B as 

quickly and as safely as possible.  However, many researchers ignore the fact that a 

map need not perfectly match the ideal map of an environment to be perfectly usable 

in that environment.  It is not necessary for a map to be an exact replica of the 

surrounding environment, it is just necessary for it to be an abstraction of that 

environment which, when combined with an appropriate path planning algorithm, 

generates a true real world path for the robot to follow.  It is the quality of these paths 

that truly give the value of the map, a value based on the use to which the map will be 

put rather than a metric based on techniques that can be seen as an extension of 

human vision such as map matching and image correlation. 

 

5.3.2 Path Comparison - Testing a Map’s Usefulness to The Robot 

To get the true worth of a map, two elements of the map must be tested. 

1. The degree to which the robot should be able to plan a path from one position 

to another using the generated map, but cannot – false negatives. 

2. The degree to which paths calculated in the generated map would cause the 

robot to collide with an obstacle, and are therefore invalid – false positives. 

 

Both of these are tested using only the map to guide the robot’s movement. 



 170 

There are four steps required to calculate the two above items of information from a 

generated map. 

1. Calculate all possible paths, in the ideal map P
I
, (see Fig 5.4).  This is done by 

generating a Voronoi graph which is explained in section 5.3.3.  Record the 

end-points of each path, E
I
.  For each pair of endpoints in E

I
 that have a path 

between them in the ideal map, attempt to create a path in the generated map 

between those two endpoints using a path planning algorithm (not the Voronoi 

graph). 

2. Count the number of paths between endpoints in E
I 
that could not be 

completed in the generated map due to obstacles existing in that map where 

they do not exist in the ideal map – false negatives.  The percentage of false 

negatives is then: 

map Ideal in the edges ofnumber  total

map generated in the paths ableincomplete ofnumber 
 

3. Calculate all possible paths in the generated map, once again using a Voronoi 

diagram.   

4. Superimpose each Voronoi edge from the generated map onto the ideal map, 

and count the percentage of edges that pass through occupied spaces, and 

would therefore cause the robot to crash – false positives.  This is equal to: 

Map Generated  theofgraph  Voronoi in the edges ofnumber  total

Map Ideal in the cells occupied through pass that edges ofnumber 
 

 

The Voronoi graph divides a map into separate freespace regions, with each node in 

the graph being the centre of a freespace region.  It can therefore be used to identify 

‘places of interest’ that the robot may with to visit, rather than a human hand-picking 

the paths to be tested within a generated map.   

 

The paths in a Voronoi graph are not necessarily optimal in length, as they are 

designed to maximise clearance from all obstacles rather than minimise the length of 

the path.   



 171 

It is also designed to find all possible paths 

in a map, and not to plan a specific path 

from one point to another.  For these 

reasons, once the Voronoi graph has been 

used to identify the start and end-points of 

the paths to be tested, a separate path 

planning algorithm must be used.  A 

modified version of the A-Star algorithm is 

used for this purpose, and is described in 

section 5.3.5. 

  

 

5.3.3 Voronoi Graphs 

As mentioned earlier, a strategy must be employed to choose start and endpoints of 

the paths that are to be applied to a map.  One possible solution to this problem, as 

mentioned above, is that a human pick the points in the map that seem to be ‘of 

interest’, and plot paths between them – 

for example, the ends of corridors, the 

centre of a room, corners etc.  

Unfortunately this introduces the problem 

of the lack of objectivity of the human – 

any two humans are almost guaranteed to 

pick different points in the same map, and 

even a single human is very unlikely to 

pick the same set of points on the same 

map two times in succession.   

Handpicking the points would also require 

more man-hours.  It is therefore desirable 

to automate the selection of these ‘points 

of interest’.  This is done by generating a 

Voronoi graph based on the occupied 

areas in the map.  A Voronoi graph 

 

Fig 5.4 Star ideal map with inscribed 

Voronoi graph of all possible paths in the 

environment. 

 

Fig 5.4 A Voronoi graph of an open area 

with multiple small obstacles represented 

black square dots. This shows all possible 

paths through the environment while 

maximising the clearance from all 

obstacles.  

 



 172 

separates a map into ‘Voronoi Regions’, which are areas of freespace surrounding an 

obstacle (see Fig 5.4).  Each node in the graph is the centre of an unoccupied region in 

the map, and is as such a ‘place of interest’ which the robot may wish to visit.  The 

edges in the graph represent all possible paths through the environment which 

maximise the robot’s clearance from obstacles.   

 

Each of the edges in the Voronoi graph are either short straight lines as in Fig 5.4, or 

have very slight curves in them.  Either way, planning a path from one Voronoi node 

to an adjacent node is a very simple task for a path planner, and will always result in 

an optimal or near optimal solution.   

 

5.3.4 Generating Voronoi Graphs 

A Voronoi graph is a graph of all possible paths in a map.  These paths are not 

necessarily the shortest paths possible, but they do maximise the robot’s clearance 

from all obstacles in the map.  Every point on the graph is exactly equidistant from 

it’s two closest obstacles, called basis points.  Nodes on the graph (places where two 

or more edges meet) are points in the environment that are equidistant from three 

obstacles.  Therefore, each point on the graph 

is maximally distant from all obstacles. 

 

To generate a Voronoi diagram, first we 

observe that all points equidistant from any 

two obstacles o1 and o2 lie on the bisector B 

of the line L between those two obstacles (see 

Fig 5.5).  All points on B are candidates for 

inclusion in the Voronoi graph as they are all 

equidistant from a pair of obstacles, o1 and 

o2. 

 

 

Fig 5.5 Two obstacles (black dots) and 

the points which are equidistant from 

them B. The line of equidistant points B 

bisects the line between the two 

obstacles L (dashed line).   



 173 

What must be ascertained is whether there are any 

other obstacles closer to any point on the bisector 

line B than either o1 or o2.  If there is another 

obstacle, o3, closer to B than o1 or o2 then B is 

truncated at the point which is the centre of the 

circle that inscribes all three points (see Fig 5.6).  

This is possible, as a geometric rule states that, for 

any three points in a plane that are not arranged in 

a straight line, a circle can be drawn with all three 

points on its circumference.  The reason for 

truncating the line B is that the centre of the circle, 

(cx,cy), which all three points lie on the 

circumference of, is equidistant from all three 

points, and any point on the line B closer to o3 than 

the centre of the circle will be closer to o3 than to 

either o1 or o2, and therefore not part of the Voronoi graph since it doesn’t have two 

equidistant basis points. 

 

For each pair of obstacles, in this case each pair of occupied cells, a line B is created 

which bisects the line L between them.  This line is checked against all other occupied 

cells in the map to find the truncation points that lead to the shortest line, B. 

 

5.3.4.1 Finding The Truncation Points For the Bisector Lines B 

Each line b can have 0, 1 or 2 truncation points.  If there are only two obstacles in the 

map, the line b will have no truncation points.  If there are three obstacles in the map, 

the line b will have at most one truncation point if at some point the third obstacles is 

closer to the line than the two obstacles which it bisects.  If there are four or more 

obstacles in the map, the line b will have at most two truncation points, one at the 

either end of the line.  All occupied cells being tested against the line are divided into 

two groups: those on the positive side of the line L and those to the negative side of L 

(see Fig 5.5).  What side of L any given point is on is calculated by finding the 

perpendicular distance between that point and L using the following formula. 

 

Fig 5.6 Line B between o1 and o2 

is truncated at the centre of the 

circle inscribing o1, o2 and o3.  All 

points after the circle centre are 

closer to o3, and not part of the 

Voronoi graph. 

 



 174 

Given that L is a line passing through two points (x1,y1) and (x2,y2), and we 

wish to find the perpendicular distance to the 

point (x,y): 

 12 yyA −=  

21 xxB −=  

( ) ( )2112 y*xy*xC −=  

with the perpendicular distance to the 

occupied cell (x,y) being 

( ) ( )( ) 22** BACyBxA +++  

This formula gives either a positive or negative 

value depending on what side of the line (x,y) is on.  

For example, two points could be at a distance of 5 

and –5 respectively from a line.  While they are at 

equal distances from the line, they would be on 

opposite sides of it. 

 

For each obstacle o3 in the map, the point on the line B that is equidistant from that 

obstacle, o1 and o2 is found by bisecting any two of the three possible chords between 

o1, o2 and o3 and finding their intersection (see Fig 5.7).  The perpendicular distance 

of that point to L is calculated.   

 

For all points on the positive side of the line L, the truncation point T
+
 with the most 

negative value is chosen, and for all points on the negative side of L the truncation 

point T
-
 with the most positive value is chosen.  The only time a circle cannot be 

inscribed between three points is if they are in a straight line.  In this case, if o3 is 

between o1 and o2 the line is discarded, since it will be closer to all points on B than 

either o1 or o2.  Otherwise it is ignored. 

 

 

Fig 5.7 To find the centre (cx, cy)  

of a circle inscribing three points, 

bisect any two chords between 

the points, and get their 

intersection. 



 175 

 

 
 

Fig 5.8 (a) The obstacle o3 is on the positive side of 

the line L (hence the + superscript), with the centre 

of the circle inscribing the three points at T
+
 (the + 

superscript indicating that it is the truncation point 

caused by a point on the positive side of the line).  

All points on the line B in the positive direction of T
+
  

are discarded. 

Fig 5.8 (b) The obstacle o3 is on the 

negative side of the line L, with the centre of 

the circle inscribing the three points o1, o2, 

and o3, at T
 -
.  All points on the line B in the 

negative direction of T
 -
 are discarded. 

 

 

Fig 5.8 (c) The obstacles o3 and o4 are on the 

negative and positive sides of L respectively. The 

centre of the circle through o1, o2 and o3 is at T
 -
, and 

the centre of the circle through o1, o2 and o4 is at T
+
.  

All points in the positive direction of T
+
 are 

discarded, and all points in the negative direction of 

T
 -
 are discarded. 

Fig 5.8 (d) The obstacles and circle centres 

are as in Fig 5.8 (c), but this time the 

complete line B is discarded since T
+
 is to 

the negative side of T
 -
.  All points in the 

positive direction of T
+
 are discarded, and 

all points in the negative direction of T
 -
 are 

discarded, but in this case this is the 

complete line. 

 

 

If  T 
+
 is less than T

 -
 then the line B is discarded as there are points on both the 

positive and negative side that are closer to all points on the line B.  Otherwise, if a 

point T
+
 was found then all points on the line B that have a perpendicular distance 



 176 

from L greater than the perpendicular distance of T
+
 are discarded.  If a truncation 

point T
 -
 was found, all points on B with a perpendicular distance from L less than the 

perpendicular distance of T
 -
 from L are discarded.  Fig 5.8 shows the four possible 

scenarios for eliminating candidate points from the Voronoi graph. 

 

5.3.4.2 Computational Cost of Generating Voronoi Graphs 

Generating Voronoi graphs is a very costly process in terms of computation time.  

Given that there are n occupied cells in a map, a total of 
( )

2

1−nn
 bisector lines B must 

be tested for inclusion in the graph.  This is because a line must be created and tested 

between the n
th
 occupied cell and all other cells, another line between the (n – 1)

th
 

occupied cell and all cells from the (n – 2)
nd

 cell on downwards etc, so the series looks 

like: 

 (n – 1) + (n - 2) + ….. + (n – (n-1)) 

This is a very common sequence, which equals 
( )

2

1−nn
. 

Each line must then be compared with a theoretical maximum of n cells in order to 

ensure that the correct truncation points are chosen.  This gives an O(n
3
) algorithm.  

For a large map with many thousands of occupied cells, even on a very fast computer 

this can take days to complete.  For example, a map with 10 occupied cells (a very 

small number) would have to examine the combination of 
( )

450
2

11010
10 =







 −
cells, 

whereas a map with 11 occupied cells has to examine the combination of 

( )
056

2

11111
11 =







 −
 cells, a large increase.  Therefore as the number of occupied 

cells increases, the number of calculations necessary increases exponentially – one of 

the maps generated in experiments had 16,000 occupied cells, requiring 

2,047,872,000,000 iterations! 

 

It is possible to cut down the running time somewhat by performing some simple pre-

processing of the data.  Firstly, any occupied cell that is completely surrounded by 

other occupied cells cannot be a basis point, as for any point in the freespace one of 

the cells surrounding it will be closer to that freespace cell than itself.  Therefore these 



 177 

cells are not used to create bisectors.  The more densely packed a map is with 

occupied cells, the more effective this step is at reducing the dimensionality of the 

problem. 

 

A second pre-processing step that has proven to drastically improve processing times 

is as follows.  Every line B passes through a certain number of freespace cells.  Rather 

than evaluating B against every occupied cell in the map, we observe that, for 

example, at a given y level in the map, there is an occupied cell to the left of the line, 

then any cells to the left of that occupied cell must be farther from the line and can 

therefore be ignored.  The same goes for cells above, below and to the right of the 

line.   

  

Fig 5.9 (a) All freespace cells record the 

closest occupied cell above, below, left and 

right of it. 

Fig 5.9 (b) Only the occupied cells referenced 

by the freespace cells B passes through are 

tested for their truncation points T since they 

are closer than all other occupied cells. 

 

The map is pre-processed, storing at each freespace cell the position of the closest 

occupied cell above, below, left and right of it (see Fig 5.9).  Each time a line B is 

being tested for inclusion in the Voronoi graph, the freespace cells it passes through 

are identified, and only those occupied cells referenced from the freespace cells are 

tested. 

 

 

 



 178 

 

5.3.5 The A-Star Path Planning Algorithm 

The A-Star path planning algorithm is a relatively quick and simple method of 

plotting a path from once freespace position in a map to another.  It operates as 

follows. 

 

Each cell in the map has three values associated with it, the G value, H value and the 

F value.   

 

The G value is an estimate of the value of being in that position based on the straight 

line distance from it to the goal.  It is used to direct the search in the direction of the 

goal rather than testing all possible cells and paths.    

 
( )
( )goalCell,startCelldist

goalCell,lcurrentCeldist
G =  

The H value is an estimation of the value of being at that cell given the probability of 

colliding with an obstacle if it were there, i.e. the occupancy value of that cell.   

 ( )lcurrentCelprobOccH =  

The F value is a weighted combination of the G and H values.  For example, if it were 

desirable to stay away from obstacles as much as possible, the H value would be 

weighted much more strongly than the G value.  If it were decided to allow the robot 

to come close to objects, the H value’s weight could be lower.  In my implementation, 

they are weighted equally, at 50% each.  F then becomes 

 ( ) ( )weightH*HweightG*GF +=  

 



 179 

The algorithm works as follows: 

PUSH(orderedList, start cell)   

WHILE(orderedList not empty) 

 currentCell = POP(orderedList)  

 IF(currentCell == goalCell) THEN 

  GOAL FOUND 

     FINISH 

 ELSE 

  FOR i = 0 TO 8 

   IF(CHILD(currentCell, i) NOT OCCUPIED) 

    ASSIGN_F_VALUE(CHILD(currentCell, i)) 

   PUSH(orderedList, CHILD(currentCell, i)) 

  END-IF 

  END-FOR 

 END-IF 

END-WHILE 

Fig 5.10 A-Star algorithm for generating a path in a metric grid-based map. 

 

As detailed above, the A-Star algorithm pops whichever cell is currently valued the 

lowest off the list, and pushes each of the 8 ‘child’ cells surrounding it onto the list, 

providing the child cell is not occupied by an obstacle.  Each child cell is assigned an 

F value before being pushed onto the list.  This continues until the goal is reached or 

all possible avenues have been attempted and discarded. 

 

The main problem with the A-Star algorithm is its tendency to become trapped in 

local minima.  Because it does not test every possible path, and instead uses the linear 

distance to the goal to estimate the best direction to take, in complex or cyclic 

environments it can often produce paths that are far from optimal. 

 

 



 180 

 

In Fig 5.11 the A-Star algorithm plots a 

path from the start point to the end goal 

while maintaining a distance of at least 

200mm, or two cells, from any obstacle.  

Not only is the complete path far from 

optimal, it also becomes trapped in some 

local minima.  The path would be much 

shorter if the robot circumvented the 

maze at the beginning, but because the 

end-goal point is below the start point the 

A-Star algorithm only searches in a 

downward direction, resulting in a 

traversal through the maze. 

 

One improvement that can be made in 

order to reduce the effect of local minima 

is applying a line fitting algorithm to the 

overall path.  This involves attempting to 

draw straight line segments between 

points in the path.  If the straight line 

doesn’t come too close to an obstacle 

then the path is replotted between the end 

points of the line.  The A-Star algorithm, 

in its basic form, represents a path as a 

continuous series of points.  Applying a 

line fitting algorithm to the path not only 

reduces the local minima, it also 

discretises the path into a set of 

waypoints, which is useful for giving the 

robot motion commands since it can be 

told to go towards a particular point, and 

know what next point to go to after that 

 

Fig 5.11 The basic A-Star algorithm often 

becomes trapped in local minima due to its 

using linear distance to the end-goal as an 

estimation of the worth of a path. 

 

Fig 5.12 The A-Star algorithm after line fitting 

has been applied to the map.  Line fitting is 

useful in reducing the effect of local minima, 

but does not prevent the algorithm from 

becoming stuck in global minima. 



 181 

etc.   Fig 5.12 shows the results of applying line fitting to the path generated by the A-

Star algorithm in Fig 5.11. 

 

Unfortunately, while line-fitting helps to reduce the effect of local minima, the path 

can still become trapped in global minima, as can be seen in Fig 5.12.  The reason for 

this is that although the best path would involve the robot first travelling away from 

the end-goal, this will never happen 

because each point of the path in the 

Fig 5.12 is closer to the goal than all 

the points above the start point, and 

therefore have a lower F value, or 

overall cost.  This is similar to the 

problem often encountered in 

Evolutionary Computation (EC), 

where a global optimum solution to 

the problem is surrounded by local 

minima.  The solution to problem is 

often to perform more general 

exploration, as opposed to the more 

computationally efficient directed 

search. 

 

The solution described above also 

works when applied to the problem of 

path planning.  In this case it involves 

introducing a fourth variable to the 

equation used to calculate the F value, or cost of being at any particular point in the 

map.  This variable, the I value, is the length of the path up to that point. 

 ( )lcurrentCel,startCellpathLengthI =  

This is factored into the calculation of the overall cost of being at that node, F as 

follows: 

 ( ) ( ) ( )weightI*IweightH*HweightG*GF ++=  

 

Fig 5.13 The A-Star algorithm with line fitting, as 

well as taking into account the length of the path 

and the linear distance to the goal, as opposed 

the linear distance to the goal on its own.  



 182 

The only constraint is that the weight of G must be greater than the weight of I, 

otherwise, as the path approached the goal F would increase rather than decrease.  For 

example, if the path moved from one cell to another cell in the direction of the goal, 

with each cell being 100mm to a side, it would come 100mm closer to the goal, but 

the path would also be 100mm longer.  If weightG > weightI, then the cost of the path 

decreases as it approaches the goal.  However, if weightG < weightI then the cost of 

the path will increase as it approaches the goal, because G decreased at the same rate 

as I increased. 

 

As long as the path approaches the goal, the F value will decrease because although 

weightI*I  becomes larger, weightG*G  decreases by a more significant amount.  

However, when the path continues to lengthen but does not come closer to the goal, 

the I value continues to increase since the path continues to lengthen, but the G value 

either stays the same or increases, causing the cost of the path to increase.  When the 

path becomes sufficiently long, and has not become significantly closer to the goal, 

the cost of the next node on the path currently being explored becomes greater than 

the cost of earlier nodes, causing alternative routes to be explored, as in Fig 5.13. 

 

 



 183 

Chapter 6: Experimentation Results 

6.1 Introduction 

Experimentation involved testing multiple systems on identical environments, both 

simulated and real world, and comparing the results.  The systems are based on papers 

reviewed in chapter two by authors Moravec, Elfes, Matthies, and Konolige, as well 

as containing modifications created for the purpose of this thesis.  All code used was 

written from scratch for this thesis in C++ and Flex, interfacing with the Saphira 

APIs. 

 

6.2 Platform 

The first stage of experimentation took place on the Saphira client simulator (see 

chapter 4), interfacing with the Pioneer robot simulator.  This simulator is very robust, 

well supported, often updated with additions directly requested by the users, and 

designed specifically for the ActivMedia Pioneer robots upon which experiments 

were performed.   

 

The second stage of experimentation was performed using a Pioneer 1 robot and the 

Saphira client, running map building algorithms. 

 

The decision had to be made whether to develop on the Linux or Windows platform, 

and it came down in Linux’s favour.  There were three primary reasons for this.  

Firstly, the current Saphira release, version 8.1, is more robust and better supported on 

Linux than on Windows.  Secondly, the majority of documentation and support is 

from a Linux perspective, with Windows only occasional being mentioned.  Thirdly, 

the long term goal of the UL robotics group is to develop a wide range of inter-

operable robotic service modules to create a truly autonomous robot, able to map a 

location, plan a route, localise within that environment, deal with noisy data and 

dynamic real life situations.  The software architecture presented in chapter four 

shows the flexible architecture designed for this purpose, with the initial additions of 

mapping modules developed for this thesis, as well as pursuit and evasion modules 

and mapping modules based learned sonar models developed by others in the group. 



 184 

In order to ensure that all members modules worked with each other, it was necessary 

to decide on a group-wide platform to develop on, and the majority decision favoured 

Linux for its robustness, its very flexible programming environment as well as its 

familiarity to the members of the group. 

 

6.3 What Is To Be Proven?  

Two sets of results are presented: 

 

Section 6.9 aims to show the strengths of the sonar models and probability update 

strategies put forward by Matthies, Elfes [42, 46], Moravec [46] and Konolige [33], as 

well as the modifications on the basic theories described in chapter four.   

 

There are two sonar models tested.  ME85, ME85mod, ME88 and ME88mod use the 

same two dimensional gaussian sonar model, as described in [46] and section 2.8.1.  

K97 and K97mod use the sonar model developed by Konolige in [33], which is based 

on the standard normal distribution, although K97 has a stronger bias towards 

occupied readings, whereas K97mod has more of a bias towards freespace readings. 

 

The modifications applied to the original theories, as described in detail in chapter 

four are: 

• Improved dynamic mixture model for detecting specular readings from past 

data – ME85mod, ME88mod and K97mod. 

• Feature Prediction - ME85mod, ME88mod and K97mod. 

• Pose Buckets as an additional feature – ME85mod, ME88mod. 

• Removed a bias towards freespace readings – ME85mod. 

• Reduced a bias towards surface readings – K97mod. 

 

Section 6.10 aims to show the strengths and weaknesses of the feature prediction 

method presented in chapter 3, as well as the strengths and weaknesses of using pose 

buckets to ensure the independence of sonar readings.  The combination of these two 

methods is also discussed, with the output of the mapping systems with neither of 

these additions being taken as a base line benchmark.  Only three mapping systems 

were used to provide the results for section 6.10, ME85mod, ME88mod, and K97mod.  



 185 

This is because only these three systems used both feature prediction and pose 

buckets, and to include any of the other systems in the base line benchmark would 

skew it since these systems would be included in some results and not others, making 

the comparisons between results less accurate. 

 

6.4 Experiment Plan 

6.4.1 Real World Experiments 

Experiments were performed with a number of different environments and different 

mapping systems, both on simulator and on real physical systems.  No localisation 

was performed during test runs, either on the simulator or in the real world 

experiments, as localisation is beyond the scope of this research.  For real world 

navigation of a mobile robot however, localisation is required to recover from 

odometry errors such as wheel slippage and angular drift.  The need for localisation is 

especially obvious in large cyclic environments, such as the eCSB environment 

described later, where straight walls can appear curved, and where a point visited 

earlier by the robot may seem to be a new location when returned to.  A technique 

called Simultaneous Localisation and Mapping, or SLAM, is often used to combat 

this effect.  However, in small environments the effect of odometry error can be 

minimised, therefore the real world experiments take place in the eStar environment 

described in section 6.4.5, which is small enough that the robot’s reported pose is 

within an acceptable tolerance. 

 

6.4.2 Simulated Experiments 

The Pioneer simulator simulates two types of noise.  The first is sonar noise, in which 

it models the specular manner in which sonar beams reflect off smooth obstacles.  The 

second is odometry error, in which it simulates a set degree of wheel slippage and 

angular drift.  For the simulated experiments, odometry error was turned off to 

facilitate the benchmarking of the maps generated, since the benchmarking techniques 

rely on localisation being present to account for wheel slippage.  Due to the fact that 

localisation is beyond the scope of this thesis, running simulated experiments with no 

odometry error results in more accurate and meaningful benchmark figures when 

testing map building methods.  This also facilitated the comparison of the resulting 



 186 

maps since they can be directly compared because they all have the same coordinate 

system. 

 

6.4.3 Averaging Multiple Results For A Statistically Valid Sample 

Each simulated experiment was performed five times, with the exception of the 

experiments in the Star environment, which due to its small size and homogeneity 

were only performed three times.  For real-world experiments, three runs were 

executed around the Star environment.   

 

The average result of all five runs of the robot around an environment was taken as 

the overall result.  The reason for not simply basing the result on a single test run is 

that, for example, sometimes a robot will be turned at a particular angle and not detect 

a wall which would result in a poor map being generated, whereas if it turned slightly 

it might pick up the obstacle and incorporate it into the map.  The reverse is also true 

in that just because it detected an obstacle in one test run it doesn’t mean it will detect 

it in another.  Therefore in order to get a true indication of the worth of all the various 

mapping methods, the robot traversed each environment multiple times, taking 

different paths, different speeds and moving differently – going straight, moving in a 

snake-like manner etc.  Five test runs was considered to provide a statistically valid 

sample, especially when the many varied movements and paths traversed are taken 

into account. 

 

6.4.4 Naming Convention  

The naming convention used in the following systems and test environments is as 

follows: 

Systems: To reiterate the naming convention described in Chapter 4, each system is 

based on a paper published by a certain author in a given year.  The name of the 

system begins with the first letter(s) of the surname of the author(s) of the paper.  This 

is followed by the year of publication of the paper.  E.g. ME88 is the system based on 

the 1988 paper by Larry Matthies and Alberto Elfes.  If the system features 

modifications of the theories in the original paper, its name is followed by mod. 

 

Environments: All environments begin with the letter e to distinguish them from the 

systems.  The name of the environment follows in caps.  If the environment is on the 



 187 

simulator, the name ends in sim.  If it is in the real world, it simply contains the 

environment’s name. 

 

Four different environments were tested in simulator, and two in real-world 

experiments.  All systems were tested on each environment.  However, while real-

world experiments were carried out on the large environment, eCSB (see the map later 

in this chapter in Fig 6.1), the lack of localisation routines means that the resultant 

map was very skewed.  As the benchmarking techniques are reliant on the robot 

having quite a good sense of its position, only the experimental results from the 

eSTAR environment are used because it is quite small, and therefore odometry errors 

can be minimised. 

 

6.4.5 Simulated And Real World Environments Used In Experimentation 

The six environments are as follows. 

Environment 

Name 

 

Description 

eCORRsim  

 

A corridor with obstacles.   

Width = 12000mm , Height = 2000mm 



 188 

eSTAR 

& 

eSTARsim 

 

A star shaped environment designed to show the extreme effects of 

specular reflection on the accuracy of a map.  The real-world 

environment, eSTAR, was built using triangular wooden blocks as 

can be seen in the picture above. 

Width = 5977, Height = 5977  

eCSB 

& 

eCSBsim 

 

The first floor of the Computer Science Building in the University 



 189 

of Limerick.  This environment consists of a number of corridors, 

with doors and stairs.  The map above was generated from the 

architectural drawing below, factoring out all doors not accessible 

such as private offices.  Otherwise all measurements are correct to 

the millimetre. 

Width = 44077mm, Height = 19000mm 

eAICsim 

 

A large office space with corridors, doors and miscellaneous 

obstacles, based on the aic.wld map included in the Saphira 

software suite, which is an architectural blueprint of the office area 

used by the Saphira development team. 



 190 

Width = 38000mm , Height = 30000mm  

Fig 6.1 Environments used in experimentation. 

 

6.5 Data Capture 

6.5.1 Simulated Data Capture 

For three of the four simulated environments, eCORRsim, eCSBsim and eAICsim, five 

test runs were performed, with three test runs being performed on eSTARsim, giving a 

total of eighteen test runs.  The data collected from these test runs comprised of a list 

of records, each recorded every 100ms from the robot.  Each record consisted of the 

robot’s Cartesian position, the angle it was facing, and the range readings from all its 

sonars at that point in time.  This information was stored in a file at the end of the test 

run for further processing later. 

 

Each of the eighteen simulated test runs were processed many times using a batch 

processor programme, to fully illustrate the properties of all sonar models, 

mathematical update methods, feature prediction and pose buckets.  Each test run was 

used to generate sixteen maps as explained in Fig 6.2, giving a total of 28816*18 =  

maps generated. 

Mapping 

System 

Variation(s) used: FP = Feature 

Predication, PB = Pose Buckets 

Number of maps 

generated per test run 

ME85 No FP.  No PB 1 

ME88 No FP.  No PB 1 

K97 No FP.  No PB No FP.  With PB 2 

ME85mod No FP 

No PB 

No FP 

With PB 

With FP 

No PB 

With FP 

With PB 

4 

ME88mod No FP 

No PB 

No FP 

With PB 

With FP 

No PB 

With FP 

With PB 

4 

K97mod No FP 

No PB 

No FP 

With PB 

With FP 

No PB 

With FP 

With PB 

4 

Total Number of Maps Generated Per Test Run 16 

Fig 6.2 Enumeration of the maps generated from each test run performed. 

 



 191 

Averaging of the maps was done on the basis that any subset of the total maps that 

were based on the same environment, generated with the same mapping system and 

using the same variations on the basic mapping system would be averaged.  For 

example, on the eAICsim environment, the ME85mod system with feature prediction 

turned on and pose buckets turned off was used to generate five different maps, one 

for each test run. These five maps were averaged. 

 

Once the averaging process was complete on the maps generated from simulated data, 

sixteen maps remained for each environment used.  These sixty-four averaged maps 

are the basis upon which all simulated experimentation results presented later are 

founded. 

 

While each map is itself sufficient for performing the first three benchmarks outlined 

in chapter five, Correlation, Map Score, and Map Score Occupied Cells, for the final 

two benchmarks Voronoi graphs must be generated for each map.  This meant that 

sixty-four Voronoi graphs were generated, one per map.   

 

6.5.2 Real World Data Capture 

Real world data capture took place in the eSTAR environment by tele operating a 

robot over a radio modem connection.  The data generated from this experiment is 

identical in format to the data in the simulated experiments – a list of records, with 

each record containing the robot pose and the range readings for its sonars taken once 

every 100ms during the test run. 

 

Three test runs were performed in the eSTAR environment, as with the simulated 

embodiment of eSTAR, eSTARsim.  The data was processed in an identical fashion to 

the simulated data, with sixteen maps being generated for each test run, giving a total 

of 4816*3 = maps.  Once averaging was applied to these map, sixteen maps remained 

from which to illustrate the real world performance of the mapping systems. 

 

6.6 Offline Processing Of Maps For Benchmarking 

Most offline processing of the maps took place on an application specifically created 

for this thesis, called MapViewer.  The MapViewer application was used to average 



 192 

maps, calculate correlation coefficients, and calculate map score for the complete map 

and for occupied cells.  In addition to performing tasks directly related to 

experimental results, the application can also: 

• Generate paths in a loaded map using the PlanPath object described in chapter 

four. 

• Generate Voronoi graphs of a loaded map.  Due to the computationally 

intensive nature of generating Voronoi graphs, however, the MapViewer 

application was not used to generate all the Voronoi graphs required.  Instead, 

a batch processing program was used that could run on many machines 

simultaneously, returning the generated Voronoi graph to a central server, 

often after a period of days. 

• Display the path a robot took during a test run, as well as animating the path.  

This feature was implemented for the members of the UL Robotics Team 

performing research into pursuit and evasion techniques, who required visual 

feedback from their offline experiments of one robot chasing another. 

The application contains three modes, Map Mode as in Fig 6.3 (a), Path Mode as in 

Fig 6.3 (b), and RobotRun Mode, in Fig 6.3 (c).  

 

Fig 6.3 (a) The MapViewer application in Map Mode. 



 193 

 

Fig 6.3 (b) The MapViewer application in Path Mode, with four 

paths displayed. 

 

Fig 6.3 (c) The MapViewer application in RobotRun Mode.  The 

path the robot took is displayed inside the eSTAR environment.  

Either the complete path can be displayed, or it can be 

animated to show multiple robots moving relative to each other 

in temporal space. 

 

While the MapViewer application is capable of calculating the first three benchmarks, 

Correlation, Match All Cells, and Match Occupied cells, a further two programs were 

written to carry out the final two path comparison benchmarks, each of which is based 

on Voronoi graphs and the modified A-Star path planning algorithm. 

 



 194 

The first program, VoronoiGenerator, took a map as a parameter and generated a 

Voronoi graph from it.  However for large maps such as eCSBsim and eAICsim, 

generating a Voronoi graph on a desktop computer can take a week or more.  For this 

reason the VoronoiGenerator application was deployed on twenty computers running 

in parallel, each of which reported back to a central server with the completed 

Voronoi graph for the map they were provided with.  Using this configuration resulted 

in the generation of the sixty-four Voronoi graphs taking less than three weeks in 

total. 

 

The second program used to perform the final two benchmarks, called PathEvaluator, 

took a map and a Voronoi graph as parameters and generated all the necessary results.  

 

6.7 Experimentation Results 

Three types of direct map comparison are applied to each experiment, Correlation, 

Match All Cells and Match Occupied Cells.  Correlation uses image correlation 

techniques to compare two maps and is measured in percentages, with a higher 

percentage signifying that the two maps are more similar than a lower percentage.  

Both Match All Cells and Match Occupied Cells measure the difference between two 

maps, therefore a lower score signifies that the two maps being compared are more 

similar than a higher score.  The two maps being compared have to be at exactly the 

same rotation and displacement, but if these conditions can be met then it is a more 

accurate comparison than Correlation.   

 

Match All Cells matches each cell in the first map against the corresponding cell in the 

second map, while Match Occupied Cells only compares the cells in either map that 

are marked as occupied.  The reason for carrying out two Match comparisons is that, 

when the complete map is compared using the Match All Cells method, relatively 

inaccurate maps can achieve a good score. This is due to the fact that the majority of 

cells in many maps are marked as empty, and specular sonar readings can cause far 

too much of a map to be marked empty.  The Match Occupied Cells benchmark 

compensates for this by evaluating the degree to which a mapping method marks 

freespace areas as being occupied.  When the two Match benchmarks are used in 

conjunction, they give a very accurate measure of the accuracy of a map. 



 195 

 

Two methods of evaluating the usefulness of a map as a means of navigation are also 

applied to each experiment.  Firstly the percentage of paths in a generated map that 

would pass through an occupied cell in the ideal map is calculated.  This tests the 

degree to which a mapping method does not recognise obstacles, causing it to plan 

paths through areas where the robot cannot go.  Secondly the percentage of paths in 

the real world that could not be completed in the generated map is established.  This 

tests the degree to which the mapping system creates obstacles where they do not 

actually exist, causing it to be unable to create a path between two freespace areas 

which it should be able to. 

 

Two sets of results are presented.  Section 6.9 tests just the basic sonar models of the 

six map building systems, without any pose buckets or feature prediction in order to 

directly compare the various sonar models and mathematical probability update 

procedures.  Section 6.10 examines the benefits of using pose buckets and feature 

prediction as means of discarding sonar readings. 

 

Sixty-four maps generated from simulated test runs were used to derive the results 

presented in later sections, in addition to sixteen maps from real world experiments.  

In order to extract trends from the large body of data, all figures for a particular 

benchmark result are averaged.  For example in section 6.9.1, the correlation 

benchmark figure for ME85 was calculated by averaging the correlation results for 

ME85 on all maps, over all test runs.  The averaging is performed differently in 

section 6.10.  In section 6.10 the goal is to illustrate the effect feature prediction and 

pose buckets have on the generation of a map.  Therefore to calculate, for example, 

the correlation result for maps that were generated using feature prediction but not 

pose buckets averages the correlation figures for all maps generated using either 

ME85mod, ME88mod or K97mod with feature prediction turned on and pose bucket 

disabled.  Figures from maps generated by other three systems are not included in the 

results presented in section 6.10 as they do not use both feature prediction and pose 

buckets, and therefore to include them in some of the results in section 6.10 and not in 

others would distort the findings. 

 



 196 

6.8 Ideal Maps 

Below in Fig 6.4 are four occupancy grid maps based on the environments presented 

in Fig 6.1.  The colour key is as follows: 

• White squares are freespace.  During experimentation care was taken that the 

robot came within 2.5 metres of all freespace areas in order to ensure that all 

areas of the map were detected.  Were this not done, maps generate from test 

runs with reduced coverage would receive a worse benchmark score than maps 

generated from test runs in which the covered every section of the map fully. 

• Black squares are obstacles. 

• Grey squares are unknown areas.  During the test runs the robot should never 

have detected any of the unknown areas, and therefore the maps generated 

from the test runs that changed the values from their default value 0.5 were 

penalised during benchmarking. 

• The graphs contained in the freespace areas are the Voronoi graphs of the 

freespace areas of the map, and therefore are not actual physical features that 

the robot could detect. 

 

These ideal maps were used for two purposes.  The first is as an environment for the 

Pioneer simulator, where the robot is simulated traversing each of these environments.  

The second is as an ideal map on which to base all five benchmarking techniques 

described in chapter five – i.e. these are the maps that, if a mapping method were to 

produce them after a test run, would receive 

a Correlation of 100%, and both Match 

scores would be zero (i.e. no difference 

between maps). 

 

 

Fig 6.4 (a) Star Ideal Map with a Voronoi 

graph. 



 197 

 

Fig 6.4 (b) AIC Ideal Map with a Voronoi graph. 

 

 

Fig 6.4 (c) CSIS Building 1
st
 Floor Ideal Map with a Voronoi graph. 

 

 



 198 

 

Fig 6.4 (d) Corridor Ideal Map with a Voronoi graph. 

 

 

6.9 Comparison Of Sonar Models And Mathematical Update 

Strategies, With Neither Pose Buckets Nor Feature Prediction  

A number of mathematical update strategies and sonar models are discussed in this 

thesis.  The mathematical update methods tested and presented here include ad hoc 

formulae [46], a simple Bayesian update [42], as well as using log odds in association 

with Bayesian formulae [33].  Alterations to these formulae were presented in Chapter 

4, and are the results of experiments with them are presented here with the mapping 

systems ME85mod, ME88mod and K97mod.   

 

Two sonar models are tested, the two-dimensional gaussian from [46] which is used 

in the mapping systems ME85, ME88, ME85mod and ME88mod, and the sonar model 

from [33] that is used in K97 and K97mod. 

 

This section merely tests the sonar models and the mathematical formulae used to 

build maps, leaving out the use of Pose Buckets and Feature Prediction for filtering 

noisy specular readings.  Of particular interest are the following questions. 

 

1. Is there any advantage to using a simple Bayesian update over ad hoc update 

methods, other than mathematical elegance? 

2. Do the changes to the update procedures and biases introduced in ME85mod 

and ME88mod offer any improvements over the systems upon which they are 

based, ME85 and ME88 respectively. 

3. Is the sonar model put forward by Konolige in [33] any better than the 

gaussian sonar model from Moravec and Elfes’ paper [46]? 



 199 

Both simulated and real world results are presented in each section.  The simulated 

results are based on data collected from robot runs in the four simulated environments 

introduced earlier in the chapter.  The real world results are based on data collected 

from three robot runs in a single environment, the Star environment shown earlier in 

the chapter.   

 

Due to the fact that the simulated results are far more extensive than the real-world 

results, they are the primary source from which conclusions are drawn.  The real-

world results aim merely to show that trends observable in the simulated data, for 

example the ME88mod performs better than ME88, are also present in the real world.   

The primary reason for using a small environment for observing similar trends in the 

data, as opposed to performing extensive tests on large environments is that the 

benchmarking techniques applied to the results are reliant on the estimated position of 

the robot being accurate.  In real-world robotics this involves performing 

Simultaneous Localisation and Mapping (SLAM).  However, localisation is beyond 

the scope of this thesis, meaning that the odometry errors inherent in a robots’ 

movement can significantly alter the quality of the map produced.  For example, a 

single run around the real-world first floor of the CSIS building, which was simulated 

by the eCSBsim environment in the simulated experiments, produced the map below. 

 

Fig 6.5 Map of the CSIS building produced by the K97mod map building system using both 

feature prediction and pose buckets 

 



 200 

As can be seen, odometry errors have caused the map to become very distorted, and 

therefore difficult to accurately compare to an ideal version of the map. 

 

Over short distances, however, odometry errors can be minimised, as there is 

insufficient time for errors to accumulate.  For this reason it is possible to quite 

accurately map small environments and compare the resultant map to an ideal map for 

benchmarking.  Three real-world test runs were performed on the Star environment, 

which is sufficiently small so that the errors caused by odometry inaccuracies is not 

very great. 

 

 

Fig 6.6 The Pioneer robot in the Star world test environment. 

 

Above can be seen the robot in the Star environment.  As it desirable for the generated 

map to as comparable as possible to the map generated in the simulated run, the robot 

was driven by hand in the same path that the robot took in the three simulated test 

runs.  The goal here is to show that, while the real-world results will differ from the 

simulated results, the same trends can be observed in both, for example that pose 

buckets improve the quality of a map or that K97 usually scores better than ME85 etc. 



 201 

 

6.9.1 Correlation with Ideal Map 

Simulated Results 

Mapping 

Method 
Correlation 

K97 70.48% 

K97mod 63.28% 

ME85mod 61.56% 

ME88mod 60.31% 

ME85 54.52% 

ME88 52.82% 

  

Correlation With Ideal Map               

50%

55%

60%

65%

70%

75%

K
97

K
97

m
od

M
E8

5m
od

M
E8

8m
od

M
E8

5

M
E8

8

Mapping System Used

C
o

rr
e

la
ti

o
n

 W
it

h
 I
d

e
a

l 
M

a
p

 

Fig 6.7 Correlation between the generated maps and the ideal maps.  Correlation measures 

the similarity between maps, therefore a higher percentage signifies a greater similarity 

between maps than a lower percentage does. 

 

In the results of the correlation between the generated maps and the ideal map, a 

higher degree of correlation reflects a higher level of similarity. The two sonar models 

based on work by Konolige achieved the first and second best percentages in this test, 

with the basic version, K97, performing significantly better than the modified version, 

K97mod.  This can be attributed to the fact that K97mod updates freespace areas more 

strongly than K97, and in the absence of pose buckets and feature prediction this leads 

to non-detection of obstacles.  It must be noted however that while K97’s average 

correlation value was a great deal higher than all the others, when faced with the very 

noisy Star environment, it performed significantly worse, getting a correlation value 

of 45.94%, as opposed to 57.52% for ME85mod.  This is because K97 updates occupied 

areas quite strongly, and in the face of numerous specular readings it takes the over-

conservative approach of believing a disputed cell to be occupied rather than 

unoccupied.  Fig 6.8 displays the difference between the maps generated by K97 and 

ME85mod, where it can clearly be seen the effect a significant percentage of specular 

readings can have on the maps generated.   

 



 202 

ME85mod and ME88mod, the modified versions of ME85 and ME88, performed 

better than their ancestors, as predicted, even without using pose buckets or feature 

prediction.  Interestingly, ME85 and ME85mod performed better than their Bayesian 

based siblings using a simple ad hoc cell update method, with little mathematical 

validity. 

 
 

Fig 6.8 (a) The map of the eSTARsim 

environment produced by K97 when no pose 

buckets are used.  It’s bias towards marking 

cells as occupied is readily apparent. 

Fig 6.8 (b) The map of the eSTARsim 

environment by ME85mod when no pose 

buckets or feature prediction is used.  The 

free space areas are far more accurately 

defined than the map generate by K97. 

 

Fig 6.9 shows that in environments where there are relatively few specular readings, 

at least in comparison to the highly specular eSTARsim environment, the K97 

mapping system performs considerably better than the ME85mod mapping system, as 

well as all other mapping systems tested. 



 203 

 

  

Fig 6.9 (a) The map produced by K97 without 

pose buckets of the eCORRsim environment.  

Note that it is much more accurate, due to the 

lower degree of specularity of the environment in 

comparison with the eSTARsim environment. 

Fig 6.9 (b) The map produced by ME85mod of the 

eCORRsim environment without pose buckets or 

feature prediction. 

 

Real-World Results 

Correlation With Ideal Map 

30%

35%

40%

45%

50%

55%

60%

65%

K97 K97mod ME85mod ME88mod ME85 ME88

Mapping System Used

C
o

rr
la

ti
o

n
 W

it
h

 I
d

e
a

l 
M

a
p

Real World

Simulated

 

Fig 6.10 Comparison of the Correlation results for the simulated Star environment and the 

real-world Star environment 

 

The figure above shows the correlation values for the various map building systems in 

the Star environment.  It can be clearly seen that the trends in the simulated data are 

also present in the real-world data, though the actual values are different.  This is 

inevitable, as odometry errors cause differences between the simulated environment 

and the real world measurements.  The difficulty in simulating the sonar readings 

received by the robot exactly also leads to difference between the simulated and real-

world results. 



 204 

6.9.2 Match All Cells Between Generated Maps and the Ideal Map 

Simulated Results 

Mapping 

Method 

Match All 

Cells 

K97 10.33% 

K97mod 12.11% 

ME85mod 12.96% 

ME88mod 13.13% 

ME88 16.77% 

ME85 16.78% 

  

Match of All Cells

7%

9%

11%

13%

15%

17%

19%

K
97

K
97

m
od

M
E
85

m
od

M
E
88

m
od

M
E
88

M
E
85

Mapping System used

%
 C

e
ll

-B
y
-C

e
ll

 D
if

fe
re

n
c
e
 F

ro
m

 

Id
e
a
l 

M
a
p

 

Fig 6.11 The Match All Cells benchmark measures the cell-by-cell squared difference between two 

maps, therefore the lower the percentage, the more similar the two maps are. 

 

When comparing the squared difference between the complete generated map and the 

ideal map, once again K97 performs best, achieving the lowest percentage difference 

from the ideal, with K97mod again coming second for the same reasons as discussed 

above in the correlation section.  As with the correlation value for K97 however, when 

faced with the very noisy Star environment K97 performs very poorly, achieving 

difference of 24.08% from ideal as opposed to 18.03% for ME85mod, the best score 

on that map. 

 

ME85mod and ME88mod perform better than their ancestors ME85 and ME88 

respectively. This improvement is a result of the improved dynamic mixture model, as 

well as alterations of the mathematical update procedure in ME85mod.  However, 

both ME85mod and ME88mod perform more or less identically, again calling into 

question the need for Bayesian update rules over simple ad hoc probability update 

procedures. 

 



 205 

Real-World Results 

Match of All Cells 

10%

15%

20%

25%

30%

35%

K97 K97mod ME85mod ME88mod ME85 ME88

Mapping System Used

%
 C

e
ll
-b

y
-c

e
ll
 d

if
fe

re
n

c
e

 F
ro

m
 I
d

e
a

l 
M

a
p

Real World

Simulated

 

Fig 6.12 Comparison of simulated and real-world results for the percentage of the cell-by-cell 

difference from the ideal map of the Star environment as a percentage of the difference 

between the worst possible map and the ideal map. 

 

The figure above shows that the overall trend is the same between the simulated and 

real-world results.  ME85mod performs better than ME88mod, ME88 performs better 

than ME85.  ME85mod and ME88mod perform better than ME85 and ME88 

respectively, with K97 and K97mod being somewhere in between.   

 

The only change is in the difference between K97  and K97mod.  In the simulated 

results K97mod performs better, but in the real-world results K97 performs better.  

This can largely be attributed to difficulty of accurately simulate the behaviour of a 

sonar beam in complicated environments.  Whereas the simulator works very well in 

structured environments with 90
o
 angles, in a strangely shaped environment such as 

the Star world it returns sonar readings that are too short or too long.  This, allied with 

K97’s tendency to update occupied cells too strongly, caused many freespace cells to 

marked as occupied in the simulated results.   K97mod takes a more conservative 

approach when updating occupied cells, and therefore performed better in the 

simulated results.  The real-world experiments showed the sonar behaving slightly 



 206 

differently to the simulated sonar.  While many readings were still received that were 

longer than they should have been, due to specular reflection, few if any range 

readings were too short.  This led to K97 performing better since its dynamic mixture 

model helped filter out some specular readings, and it didn’t incorrectly update as 

many freespace cells.  K97mod, on the other hand, updates freespace areas more 

strongly than K97, and therefore incorrectly marked more occupied cells as being 

unoccupied, therefore performing worse. 



 207 

6.9.3 Match of Occupied Cells Between Generated Maps and the Ideal Map  

Simulated Results 

Mapping 

Method 

Match 

Occupied 

Cells 

K97 8.48% 

ME85mod 9.20% 

K97mod 9.70% 

ME88mod 10.15% 

ME85 10.82% 

ME88 12.53% 

  

Match of Occupied Cells

7%

8%

9%

10%

11%

12%

13%

K9
7

M
E
85

m
od

K9
7m

od

M
E
88

m
od

M
E
85

M
E
88

Mapping System used

%
 C

e
ll

-B
y

-C
e

ll
 D

if
fe

re
n

c
e

 O
f 

O
c

c
u

p
ie

d
 C

e
ll

s
 F

ro
m

 I
d

e
a

l 
M

a
p

 

Fig 6.13 Match between the occupied cells in the generated maps and the ideal maps. 

 

In calculating the ability of a mapping system to correctly identify obstacles, K97 

once again comes out on top, although it performed the worst of all six systems in the 

highly specular Star environment with a difference of 20.48% from the ideal, as 

opposed to the best score of 14.03% achieved by ME85mod. 

 

Both ME85mod and ME88mod identified obstacles in the map much more effectively 

than either ME85 or ME88, but surprisingly the Bayesian models ME88mod and 

ME88 were vastly outperformed by their less mathematically elegant siblings 

ME85mod and ME85 respectively.  This resulted from the fact that the Bayesian 

update equation converges very swiftly to either a 0 or a 1 with only a few sonar 

readings, and once these end-points are reached they can never be.  Other update 

methods, such as the one used in ME85 and K97, require more readings before 

converging to a finished state, so a small number of incorrect specular readings can 

later be corrected by accurate diffuse readings, whereas the Bayesian update method 

converges to a 0 with just a few incorrect specular readings, and can never rise above 

that value once it is reached, no matter how many correct readings are received 

afterwards. 



 208 

Real-World Results 

Match of Occupied Cells

12%

13%

14%

15%

16%

17%

18%

19%

20%

21%

K97 K97mod ME85mod ME88mod ME85 ME88

Mapping System Used

%
 C

e
ll
-B

y
-C

e
ll
 D

if
fe

re
n

c
e

 o
f 

O
c

c
u

p
ie

d
 C

e
ll
s

 

F
ro

m
 I
d

e
a

l 
M

a
p

Real World

Simulated

 

Fig 6.14 Comparison between simulated and real-world results for the cell-by-cell difference 

between the generated map and the ideal map, only taking into account the occupied cells in 

both maps. 

 

The trends in the figure above are similar to those in the previous section, with 

ME85mod and ME88mod performing better than ME85 and ME88 respectively etc.  

Once again, K97 sees a large increase in accuracy, but so does K97mod.  In fact, the 

performance of all systems increases significantly over the simulated results.  As in 

the previous test, this can attributed to the fact that there were few if any sonar 

readings that were too short, and therefore fewer freespace cells marked as occupied. 

 



 209 

6.9.4 Percentage of False Positive Paths in Generated Maps  

Simulated Results 

Mapping 

Method 

% False 

Positive 

Paths 

K97 10.40% 

ME85mod 61.57% 

ME88mod 65.03% 

ME88 72.06% 

ME85  72.39% 

K97mod 73.10% 

  

% False Positive Paths

0%

10%

20%

30%

40%

50%

60%

70%

80%

K97 ME85mod ME88mod ME88 ME85 K97mod

Mapping System Used

%
 o

f 
A

ll
 P

a
th

s
 i

n
 M

a
p

 t
h

a
t 

a
re

 I
n

v
a
li

d

 

Fig 6.15 The percentage of false positive paths in the generated maps.  These are paths that possible 

for the robot to traverse according to the generated map, but which in reality would cause it to collide 

with an obstacle. 

 

As detailed in Chapter 5, this test of a map measures the safety of traversing paths 

generated using the map.  A Voronoi graph of all possible paths in the map is created, 

which is then overlaid on the ideal map.  If an edge of the Voronoi graph passes 

through an occupied cell in the ideal map, the complete edge is marked as invalid as it 

would cause the robot to crash were the robot to follow it. 

 

Mapping systems that perform poorly in this test are those that tend to update 

freespace areas too strongly, causing paths to be plotted through occupied spaces.  As 

such, K97 came out on top of this test by a very large margin, having only 10.4% of 

it’s paths passing through occupied spaces, whereas all other systems had over 60% of 

their paths being invalid. 

 

ME85mod and ME88mod performed similarly to each other, and had fewer invalid 

paths than both ME85 and ME88.  In both cases this can be attributed to the fact that 

when one cell in a sonar beam claims the reading to be specular, all cells in the sonar 

beam are updated accordingly, rather than just that particular cell.  Specular readings 

are thereby recognised and ignored more reliably, so fewer obstacles are marked as 



 210 

freespace.  K97mod performed the worst of all systems, which can be attributed to the 

fact that it strongly updates freespace areas, and without pose buckets or feature 

prediction it can miss many obstacles.  

 

A problem with this test is that it is biased towards those systems that update 

freespace areas weakly, so systems that have far too many occupied cells in a map 

will seem to be very good.  This is because if there are too many obstacles, very few 

paths will be generated as it will seem as if the robot cannot go anywhere in the map, 

as opposed to appearing as if the robot can go place where in reality it cannot.  

Therefore, if few paths are possible in the map being tested, it is far less likely that 

these paths will be invalid.  Therefore a counter balance to this test is required to 

balance the deficits outlined here.  Whereas this benchmark examines the freespace 

areas of a map, the fifth benchmark examines the occupied areas of a map.  When 

these two benchmarks are used in conjunction, they provide an accurate fitness 

measure for a map. 

 

Real-World Results 

% False Positive Paths

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

K97 K97mod ME85mod ME88mod ME85 ME88

Mapping System Used

%
 o

f 
A

ll
 P

a
th

s
 i
n

 M
a

p
 t

h
a

t 
A

re
 I
n

v
a

li
d

Real World

Simulated

 

Fig 6.16 Comparison of simulated and real-world experimentation results of the percentage of 

all paths in the generated map that would cause a collision in the real world. 

 



 211 

The trend of the real-world results follows the simulated results almost exactly, with 

the exception of K97.  Whereas all other systems improve their performance, K97 

seems to perform worse.  The reason for this, however, is that in the simulated K97 

map, almost all the freespace cells were marked as occupied, and therefore there were 

almost no paths that could be invalid, so while in this test the simulated K97 seems to 

perform well, the next benchmark shows that this is not the case. 



 212 

6.9.5 Percentage of False Negative Paths  

Simulated Results 

Mapping 

Method 

% False 

Negative 

Paths 

ME88mod 0.92500% 

K97mod 0.92500% 

ME85mod 0.92575% 

ME88 0.95925% 

ME85 0.95925% 

K97 18.54685% 

  

% False Negative Paths

0

2

4

6

8

10

12

14

16

18

20

ME88mod K97mod ME85mod ME88 ME85 K97 

Mapping System Used

%
 R

e
a

l 
W

o
rl

d
 P

a
th

s
 N

o
t 

C
o

m
p

le
ta

b
le

 

Fig 6.17 Percentage of false negative paths in the generated map.  These are the paths that are 

possible to plot in the ideal map, but are not possible to complete in the generated map due to 

freespace regions being marked as occupied. 

 

Whereas the previous test applied the 

question ‘If the robot were to use this map 

to explore the environment, how safe 

would it be?’, this test asks ‘If the robot is 

required to move from one real-world 

position to another, would it be possible to 

use this map to plan the route?’.  This 

benchmark presents the percentage of false 

negative paths in a map.  These are paths 

can be completed in the ideal map, but not 

in the generated map.  The only reason a 

path could not be completed in a map is if 

the mapping system has marked freespace 

areas as being occupied.  This test is 

therefore essentially the inverse of the previous benchmark, which presented the 

percentage of false positive paths. 

 

 

Fig 6.18 Map of the eSTARsim environment 

generated by the K97 mapping system when 

pose bucket are not used. 



 213 

All systems performed very similarly in this test, with the exception of K97.  This can 

be attributed to the fact that K97 takes a conservative approach towards specular 

readings, which means that it has a tendency to update occupied areas too strongly.  In 

highly specular environment K97 often marks many freespace cells as being occupied, 

making it difficult to plan a path using the map.  The results above are skewed by this 

fact.  In the three open corridor-like environments K97 performed similarly to the 

other five mapping systems.  Only in the very noisy Star environment did it perform 

spectacularly badly, giving the map on the right.  

 

Real-World Results 

% False Negative Paths 

0%

10%

20%

30%

40%

50%

60%

70%

K97 K97mod ME85mod ME88mod ME85 ME88

Mapping System Used

%
 R

e
a

l-
W

o
rl

d
 P

a
th

s
 N

o
t 

C
o

m
p

le
te

a
b

le

Real World

Simulated

 

Fig 6.19 Comparison of the simulated and real world results of the percentage of paths from 

the real world that could not be completed in the generated map. 

 

Both the simulated and real-world results follow the same pattern here.  All systems 

except for K97 have zero incomplete paths.  This is largely due to the fact that they all 

overestimate the freespace areas in the environment, making it simple to complete a 

path.  K97, on the other hand, overestimates the occupied areas of a map, and 

therefore in some areas it is impossible to plan a path between two points which, in 

the real world, it is possible to make a path through.  The real world experiments 

show K97 performing significantly better than in the simulated results, and for the 



 214 

same reason as previously mentioned – the simulator finds it difficult to model the 

behaviour of a sonar beam in complicated environments like the Star world. 

 

6.9.6 Evaluation of Results 1 

The three questions being answered by the above series of tests are: 

1. Is there any advantage to using a simple Bayesian update over ad hoc update 

methods, other than mathematical elegance? 

2. Do the changes to the update procedures and biases introduced in ME85mod 

and ME88mod offer any improvements over the systems upon which they are 

based, ME85 and ME88 respectively. 

3. Is the sonar model put forward by Konolige in [33] any better than the 

gaussian sonar model from Moravec and Elfes’ paper [46]? 

 

6.9.6.1 Question 1 

As to question 1, in all the tests above the systems using an ad hoc probability update 

procedure, ME85 and ME85mod, performed at least as well as their respective 

siblings, ME88  and ME88mod, and sometimes better.  All four systems were given 

the same gaussian sonar model, with ME85 and ME88 being identical except for the 

Bayesian update, and ME85mod and ME88mod being identical except for the 

Bayesian update.  While both K97 and K97mod use a modified Bayesian update 

procedure, and perform best of all the systems being tested, they also use a 

significantly different sonar model and therefore cannot be compared directly with the 

other systems on the basis of just the probability update mathematics.  The only 

conclusion that can be drawn from these results is that the Bayesian update procedure 

offers no tangible performance enhancement over the simple mathematical update 

formulae used in ME85 and ME85mod.   

 

This result flies in the face of all research published since the mid 1980’s in the field 

of probabilistic mapping, but the results are clear.  While using Bayesian logic as a 

foundation for developing update strategies leads to mathematically robust formulae, 

the direct application of the most basic Bayesian probability update formula,  

 ( ) ( ) ( )
( ) ( ) ( )( ) ( )( )OCCPOCC|RPOCCPOCC|RP

OCCPOCC|RP
R|OCCP

−−+
=

11
 



 215 

offers no performance improvement over the ad hoc update developed by Moravec 

and Elfes [46] and described in chapter 2. 

 

6.9.6.2 Question 2 

The second question posed was whether or not the modifications in ME85mod and 

ME88mod offered any performance improvements over ME85 and ME88.  These 

modifications included, in the case of ME85mod, removing the bias towards believing 

freespace readings over surface readings, and in the case of both ME85mod and 

ME88mod, using an improved dynamic mixture model to better compensate for 

specular readings using previously collected data.   

 

In each of the tests, ME85mod and ME88mod performed better than their ancestors, 

usually much better, showing that their ability to better identify erroneous readings 

(an enhanced version of Konolige’s Dynamic Mixture Model [33]) gives them a large 

performance boost, creating much more accurate maps. 

 

6.9.6.3 Question 3 

The third question was whether or not Konolige’s sonar model performed any better 

than the simple gaussian model from Moravec and Elfes’ 1985 paper [46].  In all of 

the tests save the last, K97 performed the best of all systems.  However it’s overly 

conservative approach of updating occupied cells is a weakness in very noisy 

environments, as seen in the fifth test.  K97mod also performed well, coming in the 

top two in most tests, and performing far better than K97 in highly specular areas. 

 

6.10 Comparison Of The Contribution of Pose Buckets and Feature 

Prediction To The Accuracy Of A Map 

In order to evaluate the benefits of performing Feature Prediction to identify and 

discard noisy readings, as well as using Pose Buckets to ensure the independence of 

consecutive sonar readings, experiments were carried out on all simulated 

environments with all mapping systems that use both of these enhancements.  These 

include ME85mod, ME88mod, and K97mod which use both Feature Prediction and 



 216 

Pose Buckets.  Experiments were also carried out in the real-world Star environment 

using the same three mapping systems. 

 

The tests applied to the maps are the same as in section 6.9; the maps are tested 

against the ideal hand-drawn map using  

• Correlation. 

• Match All Cells in the generated against the ideal map. 

• Match Occupied Cells in generated and ideal maps. 

• Finding the percentage of false positive paths in the generated map. 

• Finding the percentage of false negative paths in the generated maps. 

The average of the results from all maps is shown in each test, with the performance 

of the systems: 

• With neither feature prediction nor pose buckets. 

• With pose buckets but no feature prediction. 

• With feature prediction but no pose buckets. 

• With both pose buckets and feature prediction. 

Only the results from the systems ME85mod, ME88mod and K97mod are included in 

these results because only these three systems use both pose buckets and feature 

prediction, and it is desirable to observe how they behave with and without both of 

these enhancements.  The results from ME85, ME88 and K97 are not included 

because do not use both pose buckets and feature prediction and should therefore not 

be included as part of the baseline benchmark. 

 



 217 

6.10.1 Correlation with Ideal Map 

Simulated Results 

Mapping  

Enhancements 
Correlation 

No PB, No FP 61.72% 

With PB, No FP 75.92% 

With FP, No PB 78.45% 

With FP, With PB 81.65% 

  

Correlation

50

55

60

65

70

75

80

85

No PB, No FP With PB, No FP With FP, No PB With FP, With

PB

Mapping Enhancement Used 

(FP = Feature Prediction, PB = Pose Buckets)

%
 C

o
rr

e
la

ti
o

n
 W

it
h

 I
d

e
a
l 

M
a
p

 

Fig 6.20 Average Correlation of all maps generated by ME85mod, ME88mod and K97mod, grouped 

by their use of feature prediction and pose buckets. A higher correlation value indicated a higher 

degree of similarity between two maps. 

 

The performance of the mapping systems when using neither feature prediction (FP) 

nor pose buckets (PB) is quite poor, with a low correlation of 61% with the ideal map.   

A large improvement in the quality of the map, at least in terms of correlation, is 

observed as soon as redundant readings are removed by using pose buckets.  While 

pose buckets treat both freespace and obstacle readings equally, the fact that there are 

generally many more specular freespace readings than correct obstacle readings 

means that many more erroneous readings are ignored than correct readings, leading 

to a better map being generated. 

 

An even larger improvement in map correlation is achieved by using feature 

prediction.  Whereas pose buckets improve the map quality by virtue of the fact that 

there are more erroneous readings than non-noisy readings, feature prediction directly 

targets noisy specular readings and removes them, and at the same time has little or no 

effect on correct readings. 

 



 218 

Using both feature prediction and pose buckets together yields even more impressive 

results, showing that while they overlap in some of the incorrect readings they 

discard, where pose buckets may mistakenly believe a noisy reading, feature 

prediction will recognise and discard it, and vice versa. 

Real-World Results 

Correlation

40%

45%

50%

55%

60%

65%

70%

75%

No PB, No FP With PB, No FP No PB, With FP With PB, With FP

Mapping Enhancement Used                                                                                                 

(PB = Pose Buckets,FP = Feature Prediction)

%
 C

o
rr

e
la

ti
o

n
 W

it
h

 I
d

e
a

l 
M

a
p

Real World

Simulated

 

Fig 6.21 Comparison of the simulated and real-world results of the correlation between the 

generated map and the ideal map of the eSTAR environment. 

 

The simulated and real-world results follow a similar pattern.  They both show that 

Pose Buckets and Feature Prediction improve the quality of the map, even in such an 

irregular environment prone to specular reflections as the eSTAR world.  They also 

both show that the best results of all are obtained by using a combination of Pose 

Buckets and Feature Prediction. 



 219 

6.10.2 Match All Cells Between Generated Maps and the Ideal Map 

Simulated Results 

Mapping  

Enhancements 

Match  

All Map 

No PB, No FP 12.73% 

With PB, No FP 7.31% 

With FP, No PB 6.68% 

With FP,With PB 5.60% 

  

Match of All Map

0

2

4

6

8

10

12

14

No PB,No FP With PB,No FP With FP,No PB With FP,With

PB

Mapping Enhancement Used

(FP = Feature Prediction, PB = Pose Buckets)

%
 C

e
ll
-B

y
-C

e
ll
 D

if
fe

re
n

c
e

 F
ro

m
 

Id
e

a
l 
M

a
p

 

Fig 6.22 Average Match of all cells in all maps generated by ME85mod, ME88mod and K97mod, 

grouped by their use of feature prediction and pose buckets. 

 

As with in correlation test, when deprived of pose buckets or feature prediction to 

remove specular readings, the mapping systems perform very poorly, with an average 

difference of almost 13% from the ideal map.  This means that for each cell in a map 

with a value in the range [0,1], all cells are on average 0.13 from the value they 

should be.  However this figure is merely an average.  Given that many cells are much 

closer to their ideal value than 0.13, many cells can often be 0.6 or 0.7 from the ideal 

value.  This means that many occupied cells are marked as empty, and vice versa. 

 

Once pose buckets are introduced to the mapping process the error drops dramatically 

since many incorrect readings are discarded, along with a smaller number of correct 

readings.  Feature prediction improves matters to a greater degree than pose buckets, 

once again discarding many incorrect specular readings, but keeping more correct 

readings than pose buckets. 

 

One again, feature prediction and pose buckets prove to be complimentary to each 

other, and using them together gives a further improvement in map quality.  As 



 220 

explained in the correlation section, where feature prediction may mistake an 

incorrect reading for a correct one, pose buckets sometimes discard it, and vice versa. 

 

Real-World Results 

Match of All Map 

5%

7%

9%

11%

13%

15%

17%

19%

21%

No PB, No FP With PB, No FP No PB, With FP With PB, With FP

Mapping Enhancement Used                                                                                                               

(PB = Pose Bucket, FP = Feature Prediction)

%
 C

e
ll
-B

y
-C

e
ll
 D

if
fe

re
n

c
e

 f
ro

m
 I
d

e
a

l 
M

a
p

Real World

Simulated

 

Fig 6.23 Comparison of simulated and real-world results for the percentage cell-by-cell 

difference between the generated map and the ideal map of the eSTAR environment. 

 

The simulated and real-world results follow very similar patterns, with both the use of 

Pose Buckets and Feature Prediction improving the quality of the maps (albeit by 

slightly different amounts), and using both together giving the best map of all, as with 

the Correlation result prior to this. 

 



 221 

6.10.3 Match of Occupied Cells Between Generated Maps and the Ideal Map 

Simulated Results 

Mapping  

Enhancements 

Match  

Occupied 

 Cells 

No PB, No FP 9.66% 

With PB, No FP 5.94% 

With FP,No PB 5.62% 

With FP,With PB 4.38% 

  

Match of Occupied Cells

0

2

4

6

8

10

No PB,No FP With PB,No FP With FP,No PB With FP,With PB

Mapping Enhancement Used

(FP = Feature Prediction, PB = Pose Buckets)

%
 C

e
ll
-B

y
-C

e
ll
 D

if
fe

re
n

c
e

 O
f 

O
c

c
u

p
ie

d
 C

e
ll
s

 F
ro

m
 I
d

e
a

l 
M

a
p

 

Fig 6.24 Average Match of occupied cells in all maps generated by ME85mod, ME88mod and K97mod, 

grouped by their use of feature prediction and pose buckets. 

 

As in the previous two tests, when the mapping systems integrate the sonar 

information into the map without pose buckets or feature prediction, they miss many 

of the obstacles in the map and believe that obstacles exist where in fact they don’t. 

 

Using pose buckets immediately cuts down the obstacle-detection error by a large 

margin, almost halving it.  From inspection of the maps created just using pose 

buckets, it can be seen that many more obstacles are correctly identified, with less 

‘bleeding’ of freespace areas into occupied areas.  However there are still many ‘sonar 

shadows’ behind the walls, which account for much of the 5.94% error. 

 

Feature prediction offers a similar performance gain to pose buckets, though for a 

different reason.  While feature prediction does lead to many more obstacles being 

correctly identified, it also cuts the number of sonar shadows in the map drastically by 

discarding or weakening readings that report obstacles farther away than they are.  

The fact that it doesn’t give a significant improvement in this test over pose buckets 

leads one to believe that it misses more real obstacles than pose buckets. 

 



 222 

When used together, FP and PB once again complement each other, correctly 

identifying twice as many obstacles as the mapping systems would without them. 

 

Real-World Results 

Match of Occupied Cells 

6%

8%

10%

12%

14%

16%

18%

No PB, No FP With PB, No FP No PB, With FP With PB, With FP

Mapping Enhancement Used                                                                                                               

(PB = Pose Buckets, FP = Feature Prediction)

%
 C

e
ll
-b

y
-C

e
ll
 d

if
fe

re
n

c
e

 b
e

tw
e

e
n

 

O
c

c
u

p
ie

d
 C

e
ll
s

 a
n

d
 I
d

e
a

l 
M

a
p

Real World

Simulated

 

Fig 6.25 Comparison of simulated and real-world results of the percentage cell-by-cell 

difference between the occupied cells in the generated Star map, and the ideal map of the 

Star environment. 

 

The simulated and real-world results mimic each other in Fig 6.25, with both of them 

showing that both Pose Buckets and Feature prediction reduce the number of mis-

marked occupied cells, and that both used together give the best map of all. 



 223 

6.10.4 Percentage of False Positive Paths in Generated Maps 

Simulated Results 

Mapping  

Enhancements 

% False 

Positive  

Paths 

No PB, No FP 66.57% 

With PB, No FP 36.61% 

With FP, No PB 40.63% 

With FP,With PB 14.86% 

  

% False Positive Paths

0

10

20

30

40

50

60

70

No PB, No FP With PB, No FP With FP, No PB With FP, With

PB

Mapping Enhancement Used

(FP = Feature Prediction, PB = Pose Buckets)

%
 o

f 
A

ll
 P

a
th

s
 i

n
 M

a
p

 t
h

a
t 

a
re

 

In
v

a
li

d

 

Fig 6.26 Percentage of false positive paths in the generated map.  These are paths can be generated in 

the generated map, but which in the ideal map would cause the robot to collide with an obstacle. 

 

 This test clearly shows the weakness of a mapping algorithm – when neither pose 

buckets nor feature prediction are used to generate the map to the map, 66% of all 

paths generated on the map will cause the robot to crash.  While low-level behaviours 

can be used to avoid an actual collision with an object, the robot will be required to 

compute an alternative path.  All of this will cause a significant performance hit, with 

the robot taking far longer to complete the task at hand. 

Either pose buckets or feature prediction, used in isolation, reduce the number of 

invalid paths in the map by almost 50%.  However the best results are once again 

  

Fig 6.27 (a) Voronoi graph in map of eCORRsim 

generated by ME85mod without feature prediction or 

pose buckets.  Note the many paths are plotted 

through either unknown areas or obstacles. 

Fig 6.27 (b) Voronoi graph in map of eCORRsim 

generated by ME85mod using both feature 

prediction and pose buckets.  The majority of paths 

are confined to actual freespace areas. 

 



 224 

achieved by using the two filtering method together, which results in almost five 

times fewer false positive paths in the generated map.  This can be seen in Fig 6.27, 

where the introduction of feature prediction and pose buckets results in far fewer 

paths being plotted through unknown or obstacles in the ideal map. 

 

Real-World Results 

% Invalid Paths

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

No PB, No FP With PB, No FP No PB, With FP With PB, With FP

Mapping Enhancement Used                                                                                                            (PB = Pose 

Buckets, FP = Feature Prediction

%
 O

f 
a

ll
 P

a
th

s
 i
n

 t
h

e
 M

a
p

 T
h

a
t 

a
re

 I
n

v
a

li
d

Real World

Simulated

 

Fig 6.28 Comparison of the simulated and real-world results of the percentage of paths 

created in the generated map that would cause a collision in the real-world. 

 

The real world results resemble the simulated results very closely in Fig 6.28, with the 

exception of the map generated using neither Pose Buckets nor Feature Prediction, 

which performed much better than in the simulated run.  This can be explained by the 

fact that, in the Star environment, there are fewer specular reflections that in the 

simulated environment because of the roughness of the materials used in its 

construction.  Both Pose Buckets and Feature Prediction, on their own, seem to 

perform more or less the same as each other based on these results.  However, visual 

inspection of the maps created show that the maps generated just using Pose Buckets 

slightly overestimate the number of occupied cells in the map, and the maps generated 

with Feature Prediction slightly overestimate the number of freespace cells.  When the 

two are used in tandem they tend to cancel out the weaknesses of the other to some 

degree, giving the best overall map.



 225 

6.10.5 Percentage of Paths from Ideal Maps that Could Not be Completed In 

Generated Maps 

Simulated Results 

Mapping   

Enhancements 

%False  

Negative  

Paths 

No PB, No FP 0.925%

With PB, No FP 1.819%

With FP, No PB 1.029%

With FP, With PB 1.235%

  

% False Negative Paths

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

No PB, No FP With PB, No FP With FP, No PB With FP, With

PB

Mapping Enhancement Used

(FP = Feature Prediction, PB = Pose Buckets)

%
 R

e
a

l 
W

o
rl

d
 P

a
th

s
 N

o
t 

C
o

m
p

le
te

a
b

le

 

Fig 6.29 Percentage of false negative paths in all maps generated by ME85mod, ME88mod or K97mod, 

grouped by their use of feature prediction and pose buckets.  These are paths that can be plotted in the 

ideal map, but cannot be completed in the generated map. 

 

This test is designed to test the degree to which a mapping system marks a freespace 

cell as being occupied.  It does this by measuring the number of paths that can be 

completed in the real world, but could not be completed in the generated map.  The 

reason percentages are so low, all less than 2%, is because all paths in a Voronoi 

graph maximise the distance from all obstacles, so the only time a path will come 

close to an obstacle is in a very confined space such as a narrow corridor. 

 

This is the only test that the mapping systems which use neither pose buckets or 

feature prediction perform best.  Because these systems treat all readings equally and 

there are generally many more freespace readings than obstacle readings, they tend to 

overestimate the freespace areas rather than place obstacles in the freespace areas. 

 

Pose buckets, used on their own, perform worst of all the methods with respect to 

false negative paths.  This is because, while they believe both freespace and surface 

readings equally, they ensure that there is at most a difference of 1 reading between 

the number of freespace and surface readings from any given position.  This prevents 



 226 

the freespace readings from ‘drowning out’ the incorrect surface readings, unlike the 

systems that don’t use pose buckets. 

 

Feature prediction, used on its own, performed similarly to the mapping methods that 

used neither it nor pose buckets.  This is because feature prediction only filters out 

readings that appear to pass through walls, and has little or no effect on readings that 

are too short, or that appear to be in freespace areas without passing through an 

obstacle.  For these reasons, the results in this test are more or less the same as if 

feature prediction were not used at all. 

 

When pose buckets are combined with feature prediction, it improves the performance 

in comparison with the pose buckets in isolation, but is worse than the performance of 

the feature prediction algorithm on its own.  The reason for the improvement in 

performance over PB is that some of the erroneous readings accepted by PB, which 

then cause it to discard later correct readings, have been filtered out by FP.  The 

degradation of the maps in comparison with FP is the flip side of that coin – FP 

doesn’t identify all of the incorrect readings that are too short, as explained above, so 

PB still accepts some incorrect readings and discards later valuable readings, whereas 

feature prediction allows them all to be added to the map, enabling the good readings 

to somewhat counterbalance the bad readings. 



 227 

Real-World Results 

% Incompletable Paths

0%

1%

1%

2%

2%

3%

3%

4%

4%

No PB, No FP With PB, No FP No PB, With FP With PB, With FP

Mapping Enhancement Used                                                                                                         

(PB = Pose Bucket, FP = Feature Prediction)

%
 R

e
a

l-
W

o
rl

d
 P

a
th

s
 n

o
t 

C
o

m
p

le
te

a
b

le

Real World

Simulated

 

Fig 6.30 Comparison of the simulated and real-world results of the percentage of paths in the 

real world that could not be completed in the generated map. 

 

Fig 6.30 shows that the real-world data follows the same pattern as the simulated data, 

albeit with Pose Buckets on their own performing significantly better. 

 

6.10.6 Evaluation of Results 2 

The tests performed in this section have shown conclusively that both pose buckets 

and feature prediction significantly add to the accuracy and usefulness of a map.  

When used individually both caused a large improvement in the generated map’s 

fidelity to the ideal map.  When used together, they yielded even better results, 

proving that they are complimentary methods of filtering noisy sonar readings, and 

that while they overlap somewhat in the readings that they discard, where one fails to 

identify an erroneous reading, the other will often succeed.   

 

The real-world results mirror the simulated results very often, and the few times there 

are differences, this can be attributed to the differences in the surface texture of the 

materials in the environment.  While this validates the larger body of simulated data, 

it also shows that the Pioneer simulator used is a very well build simulator 

 



 228 

Chapter 7: Conclusions 

7.1 Theoretical Evaluation of Mapping with Mobile Robots using 

Sonar Sensors 

There are a number of areas of interest in this thesis.  Firstly, theoretical evaluations 

of the following six bodies of work are presented in Chapter 2.  

• Probabilistic Occupancy Grid theory put forward by Moravec and Elfes [46]. 

• Bayesian based Occupancy Grid methods by Matthies and Elfes [42]. 

• Konolige’s MURIEL [33] method for eliminating incorrect sonar readings. 

• Crowley’s hybrid method [15] of extracting features from a local grid map. 

• Elfes’ Inference Grids [20]. 

• Thrun’s automatic learning of sensor models [57, 58] and confidence values 

using neural nets. 

 

The above theoretical discussions paint an in-depth picture of the current state of map 

building with mobile robots, and a multitude of paradigms put forward to solve the 

many problems associated with it such as sensor noise, positional uncertainty and 

mathematical models.   

 

While the system designed by Moravec and Elfes [46] was prone to gross errors, with 

no compensation for noise and a simple mathematical model, it laid the foundations 

for others to improve upon.  At the same time as Moravec and Elfes published their 

seminal paper, Crowley [15] published an alternative method of mapping that used a 

hybrid of grid-based maps and maps built of line segments.  This method, while 

integrating nicely with localisation routines because the orientation of obstacles is 

known, suffered from the fact that it did not deal effectively with noisy sonars.  

Neither did it represent the world probabilistically, which led to problems when 

conflicting sensory input was received. 

 

Matthies and Elfes soon improved upon the mathematical model of [46], making it 

more mathematically robust using probability theory.  While this was a welcome 

addition, and led to more intricate mathematical theories being applied to map 



 229 

building, the Bayesian update procedure in itself did not improve the quality of the 

maps produced using it.  

Konolige developed an improved sensor model as well as developing a more intricate 

mathematical probability update procedure.  He also made an attempt at dealing with 

the large amount of noise in sonar readings.  This attempt was only partly successful, 

as will be explained along with all the other experimentation results.   

 

Thrun took an alternate approach to dealing with erroneous sonar readings by training 

a confidence network to identify readings that seem to be incorrect.  He also trained a 

neural network to automatically learn a sonar model, rather than developing his own 

mathematical formula, á la Konolige.  The quality of the maps creating using Thrun’s 

approach can not be directly determined as he did not present qualitative analysis of 

his results.  Therefore it is difficult to know whether the following two potential 

pitfalls have been accounted for: 

1. Using neural nets for map building can be inaccurate if the training data is not 

well chosen, as with many neural net applications. 

2. When the robot is introduced to a new environment it must be retrained, which 

means that it does not generalise well to all environments. 

 

7.2 Feature Prediction – An Algorithm For Detecting Specular 

Sonar Readings 

A method for filtering noisy sonar readings called Feature Prediction was presented in 

Chapter 3.  The results presented in Chapter 6 show that Feature Prediction, when 

combined with any of the tested mapping systems, improved the quality of the maps 

by a large degree.  For example, in section 6.10.2, the percentage difference between 

the generated map and the ideal map without feature prediction is 12.73%, whereas 

with feature prediction it is 6.68%.  Therefore the difference between the two maps 

has been halved using Feature Prediction.  While it is not perfect, it is successful in 

discarding the vast majority of erroneous sonar readings and only very rarely discards 

correct readings.  Feature Prediction therefore goes a long way towards solving one of 

the major difficulties of mapping with sonars, that of filtering out the noisy readings. 

 



 230 

Feature Prediction makes some assumptions about the environment in order to make 

predictions about it – namely it assumes that the world is made up of straight line 

segments.  It will therefore work best in environments that come close to matching 

those assumptions.  Feature Prediction performs less well in highly cluttered 

environments with many small objects, causing more erroneous readings to be 

believed than in simpler worlds.  Even in cluttered environments however, using the 

Feature Prediction algorithm in conjunction with a mapping system such as ME88 or 

K97 leads to a much better map being produced than when it is not used. 

 

7.3 Empirical Evaluation of Mapping Algorithms 

The experiments performed aimed to answer a number of questions. 

1. Is there any advantage to using a Bayesian mathematical formula to integrate 

new readings into the map over using the simple update formula presented in 

[46]? 

2. Do the changes to the update procedures and biases introduced in ME85mod 

and ME88mod offer any improvements over the systems upon which they are 

based, ME85 and ME88 respectively. 

3. Does Konolige’s sonar model [33] create better maps than the more simplistic 

two dimensional gaussian sonar model from [46]? 

4. Does the Feature Prediction noise filtering method significantly improve the 

quality of the map when used in conjunction with a map building algorithm? 

5. Does using Pose Buckets to discard duplicate readings improve the quality of 

a map? 

 

7.3.1 Question 1 – Do Bayesian Update Formulas Improve A Map? 

To answer question one, experiments have shown that, when an identical sonar model 

is used (mapping systems ME85 and ME88), mapping systems that use a Bayesian 

probability update procedure perform either the same or worse than mapping systems 

that use the simple mathematical update proposed in [46].  This is largely due to the 

fact that the Bayesian update can cause a single reading to change the map to a large 

degree.  For example, a single specular reading that reports an area to be free of 

obstacles when it is not can cause the probability of some cells to go from an initial 

value of 0.5 (unknown) to less than 0.1 (almost definitely unoccupied).  A more 



 231 

incremental update procedure that changes the map’s cell values in smaller increments 

is required.   

 

However, the strength of the increment is determined by the sonar model.  For 

example, the sonar model decides that a particular cell should be updated with the 

number 0.2.  This figure is then integrated with the current value of the cell either 

with the Bayesian formula or the update procedure from [46].  As Moravec and Elfes’ 

update procedure [46] updates the cell probability in smaller increments than the 

Bayesian formula, it usually results in a better map being generated.  This result does 

therefore not prove that one mathematical update method is better than the other.  

Rather, given that the two dimensional gaussian sonar model used in ME85 and ME88 

can cause large alterations to occur with just a single reading, it is better to use a 

mathematical update procedure that integrates that value more weakly, i.e. the 

formulae from [46].  When a variant of the Bayesian update procedure is used with a 

different sonar model [33] based on Konolige’s work, it performs much better because 

the sonar model changes the map in much smaller increments. 

 

7.3.2 Question 2 – Have Modifications On Original Theories Improves 

Performance? 

The second question posed was whether or not the alterations made to ME85 and 

ME88, which resulted in ME85mod and ME88mod respectively, lead to better maps 

being generated.  These alterations including adding an enhanced version of 

Konolige’s Dynamic Mixture Model to both ME85mod and ME88mod.  In the case of 

ME85mod it also involved removing the bias towards believing freespace readings 

over surface readings which Moravec and Elfes had created as part of their 

mathematical update procedure and instead having no bias whatsoever, neither 

towards freespace nor surface readings. 

 

The results in Chapter 6 prove that ME85mod consistently performs better than ME85 

and that ME88mod performs better than ME88.  This shows that the when the 

enhanced Dynamic Mixture Model is used the map generated is much more accurate 

than without it. 

 



 232 

7.3.3 Question 3 – Is Konelige’s Sonar Model More Effective Than A Simple 2D 

Sonar Model 

The third question answered by the series of experiments is whether or not using the 

sonar model proposed by Konolige in [33] resulted in a more accurate map being 

generated than the more simplistic 2D gaussian sonar model developed by Moravec 

and Elfes in [46].  In almost all the benchmarking tests performed on the maps 

generate by the various mapping algorithms, K97 and K97mod, the two mapping 

systems that used Konolige’s sonar model, performed better than the other four 

mapping systems that used the 2D gaussian model.  The only exception was with K97, 

which has a tendency to overestimate the occupancy values of cells, so in 

environments very prone to specular readings, it can perform badly when evaluated 

with the fifth benchmark, which tests the robot’s ability to plan paths to real-world 

positions using the generated map. 

Part of the reason Konolige’s sonar model performs better than the 2D gaussian 

model is that it updates the map in very small increments, which means that a single 

incorrect reading does not affect the map to any considerable degree.  Konolige’s 

sonar model is therefore much more tolerant of errors and is thus better able to 

recover from them than systems that use a 2D gaussian sonar model.  Perhaps the 

main reason Konolige’s sonar model performs better than the 2D gaussian however, is 

that is simply a better approximation of the actual operational characteristics of the 

sonar beam. 

 

7.3.4 Question 4 – Does Feature Prediction Improve A Map’s Quality? 

The fourth question answered by the experiments was whether or not using the 

Feature Prediction algorithm to filter out noisy sonar readings results in a better map 

being generated.  As discussed in the previous section, whenever Feature Prediction 

was integrated with a mapping system, the quality of the maps produced drastically 

improved. 

 

7.3.5 Question 5 – Does Using Pose Buckets Improve A Map’s Quality? 

The fifth question answered by the experiments related to whether or not using Pose 

Buckets to discard duplicate readings increased the quality of the map.  Experiments 

show that the use of Pose Buckets does indeed result in more accurate maps being 

generated.  This can be attributed to the fact that there are usually a greater number of 



 233 

noisy readings than useful readings, and by ensuring that only one reading from a 

given position can affect any particular cell, multiple noisy readings are unable to 

reinforce each other.  In this way, the effect of noisy readings is reduced. 

 

In addition to proving that Pose Buckets increase the generated map’s fidelity to the 

real-world environment, it was also discovered that both Pose Buckets and Feature 

Prediction are highly complimentary filtering methods.  In almost every test, the result 

when both methods were combined to filter sonar readings before they are integrated 

with the map was better than using either of the methods on its own.  While neither 

method is perfect and some incorrect readings do slip through (more so with Pose 

Buckets than with Feature Prediction), where Pose Buckets accept a noisy reading as 

being correct, Feature Prediction will discard it, and vice versa.   

 

Another welcome discovery is that, while Pose Buckets can use a significant amount 

of memory, a problem mostly alleviated by the use of quad trees to store the Pose 

Bucket’s data, neither Pose Buckets nor Feature Prediction require a great deal of 

processing power, and were not found to affect the speed of operation of the mapping 

systems using them.  

 

7.4 Future Research 

There are a number of interesting research areas that require further work in mobile 

robot navigation.  Firstly there is the issue of localisation.  The combination of 

localisation and map building through simultaneous localisation and map building 

(SLAM) techniques is a vital component of successful mobile robot navigation 

architectures.  A large amount of work is currently under way in a variety of 

localisation methodologies, using map-matching techniques, Markov based sensor 

matching, and visual methods.  One of the most promising fields is that of localising a 

robot within a three-dimensional map using stereovision to detect the position and 

colour of objects [47].   

 

Three dimensional map building is a field that has only recently become a feasible 

research area, due to the computational resources it requires.  However computers are 

now powerful enough to both store and process the huge volumes of data in three-



 234 

dimensional maps.  Building such maps using sonars, lasers and stereovision is an 

open research area that shows much promise. 

 

The automatic learning of sensor models and confidence measures is another open 

research area, with numerous possible approaches that could be taken.  Whereas 

Thrun used neural nets to learn sonar models and confidence networks, it is also 

possible any number of genetic algorithm (GA) approaches could be successful, as 

well as different types of neural nets. 

 

A research area often ignored by map building researchers is that of map building in 

dynamic environments.  Simple occurrences such as an open door being closed, or a 

chair being moved can be very difficult to identify and model using a map.  This is 

very much an open issue, and one that must be solved before robots can be said to 

have a truly accurate map of a dynamic environment. 

 

7.5 Completion of Research Objectives 

The contribution of this thesis, as described in chapter one was as follows. 

 

7.5.1 Provides an empirical evaluation of a number of map building methods 

The experimentation results in chapter six present a detailed examination of a variety 

of sonar models and mathematical update methods, as well a number of methods for 

identifying specular readings.  Empirical evaluations are performed for each possible 

configuration of these various mapping methodologies to form a comprehensive and 

meticulous representation of the merits of each mapping method. 

 

7.5.2 The Feature Prediction algorithm has been developed to enhance map 

building algorithms, specifically to identify noisy specular readings 

The Feature Prediction algorithm was presented in detail in chapter three as a method 

for identifying specular sonar readings and assigning a confidence value to each sonar 

reading.  The algorithm was implemented in the SpecularEstimator object as detailed 

in chapter four, which is portable to any architecture and to any robot configuration.  

The results presented in chapter six show clearly that Feature Prediction improves the 

quality of the maps generated to a considerable degree. 



 235 

7.5.3 Development of a suite of benchmarking techniques for map building 

algorithms 

A comprehensive suite of five benchmarking techniques for evaluating the fitness of a 

map was presented in chapter five.  These benchmarks used techniques from the field 

of image recognition, as well as using methods specific to metric grid maps.  

Benchmarks were also developed that test a map in the manner in which a robot 

would use it, i.e. by generating paths in it using a path planning algorithm, and then 

calculating the value of those paths. 

 

7.5.4 Design and implementation of platform-independent robot control 

architecture, with support for threading, multiple clients and callbacks, and can 

be run on a single machine or distributed over a network. 

A framework for robotic control was presented in chapter four.  A standard interface 

for robotic control services is presented to which clients can register, send 

information, and be notified by the service of any actions that must be taken.  The 

architecture contains no dependencies on any robot or protocol, and is therefore 

portable to any robot or simulator.  It is also full distributable, and has been 

successfully distributed over multiple machines using CORBA to execute multiple 

services simultaneously over a network, each receiving data from multiple robots 

operating in the same environment. 

 

 

 

And at this point, there is only one thing left to be said: 

 Tá sé criochnadh, buoichas le dia! 

 

 

 

 



 236 

Bibliography 

1. Baron, R. J. 1981. "Mechanisms of human facial recognition." International 

Journal of Man Machine Studies 15: 137-178. 

2. Boden, M. A. 1988. Computer Models of the Mind: Computational Approaches in 

Theoretical Psychology. Cambridge, Cambridge University Press. 

3. Boden, M. A. 1990. The Philosophy of Artificial Intelligence, Oxford University 

Press. 

4. Borenstein, J., Everett, B., Feng, L. 1996. “Navigating Mobile Robots: Systems 

and Techniques.” A.K. Peters, Ltd, Wellesley, MA. 

5. Brooks, R. A. 1986. “A Robust Layered Control System For A Mobile Robot.” 

IEEE Journal of Robotics and Automation 2(1): 14-23. 

6. Brooks, R. A. 1986. “Achieving Artificial intelligence through building robots”, 

AI-Laboratory, Massachusetts Institute of Technology, Cambridge, MA, AI-

Memo 899, 1986. Cambridge, MA, AI Laboratory, MIT. 

7. Brooks, R. A., Connell, J.H., Ning, P. 1988. “Herbert: A Second Generation 

Mobile Robot.” Memo 1016. MA, USA, MIT AI Lab. 

8. Brooks, R. A. 1989. “A Robot That Walks: Emergent Behaviors from a Carefully 

Evolved Network.” MA, USA, MIT AI Laboratory. 

9. Brooks, R. A. 1990. “Elephants Don't Play Chess.” MA, USA, MIT AI 

Laboratory. 

10. Brooks, R. A. 1991. “Intelligence Without Reason.” MA, USA, MIT AI 

laboratory. 

11. Brooks, R. A. 1991. "Intelligence Without Representation." Artificial Intelligence 

Journal(47): 139-159. 

12. Brunelli, R., Poggio, T. 1993. "Face Recognition: Features versus Templates." 

Pattern Analysis and Machine Intelligence, IEEE Transactions on 15(10): 1042-

1052. 

13. Burgard, W., Fox, D., Hennig, D., Schmidt, T 1996. “Estimating the Absolute 

Position of a Mobile Robot Using Position Probability Grids.” Proceedings of the 

Thirteenth National Conference on Artificial Intelligence, 1996. 

14. Collins, J. J., O’Sullivan, S., Mansfield, M., Eaton, M., Haskett, D. 2004. 

“Developing an extensible  benchmarking framework for map building 



 237 

paradigms.”. In Proceedings Ninth International Symposium on Artificial Life and 

Robots, Oita, Japan, January 2004. 

15. Connell, J. 1989. “A Colony Architecture for an Artificial Creature.” MA, USA, 

MIT AI Lab. 

16. Crowley, J. L. 1985. "Navigation for an Intelligent Mobile Robot." IEEE Journal 

of Robotics and Automation RA-1(1): 31-41. 

17. Crowley, J. L. 1989. “World Modelling and Position Estimation for a Mobile 

Robot Using Ultrasonic Ranging.” Proceedings 1989 IEEE International 

Conference on Robotics and Automation, Scottsdale, Arizona, USA. 

18. Devore, J. L. 1991. Probability and Statistics for Engineering and the Sciences, 

3rd Ed. Belmont, CA, USA, Wadsworth Inc. 

19. Drumheller, M. 1987. "Mobile Robot Localization Using Sonar." IEEE 

Transactions on Pattern Analysis and Machine Intelligence PAMI-9: 325-332. 

20. Elfes, A. 1992. Dynamic Control of Robot Perception Using Multi-Property 

Inference Grids. Proceedings, 1992 IEEE International Conference on Robotics 

and Automation, 1992.. 

21. Evans, A. 2001. “Four Tricks for Fast Blurring in Software and Hardware” 

[online]. http://www.gamasutra.com/features/20010209/evans_01.htm 

22. Fodor, J. A. 1987. “Modules, frames, fridgeons, sleeping dogs and the music of 

the spheres. The robot's dilemma: The frame problem in artificial intelligence”. Z. 

Pylyshyn. Norwood, NJ. 

23. Fox, D., Burgard, W., Thrun, S. 1999. "Markov Localization for Mobile Robots in 

Dynamic Environments." Journal of Artificial Intelligence Research 11: 391-427. 

24. Gat, E. 1997. “On Three-Layer Architectures.” in Artificial Intelligence and 

Mobile Robots. D. Kortenkamp, Bonnasso, R.P., Murphy, R., AAAI Press. 

25. Ghosh, J. 1992. “Evidence Combination techniques for robust Classification of 

Short Duration Oceanic Signals.” SPIE Conference on Adaptive and Learning 

Systems, Orlando, FL. 

26. Griffith, K. A. 1974. "A Comparison and Evaluation of Three Machine Learning 

Procedures as Applied to the Game of Checkers." Artificial Intelligence Journal 5: 

137-148. 

27. Group, P. U. 1992. “Ultrasonic ranging system manual.” Technical report, 

Polaroid Corporation, Atlanta, GA, USA, 

28. Harnad, S. 1993. “Problems, Problems: the Frame Problem as a Symptom of the 



 238 

Symbol Grounding Problem.” Psycoloquy: 4,#34 Frame Problem (11). 2003. 

29. Heckerman, D. 1986. “Probabilistic interpretation for MYCIN's uncertainty 

factors.” Uncertainty in Artificial Intelligence. L. N. L. Kanal, J.F. North-Holland: 

197-196. 

30. Hwang, Y. K., Ahuja, N. 1992. "A Potential Field Approach to Path Planning." 

IEEE Transactions on Robotics and Automation 8(1): 23-32. 

31. Kaelbling, L. P. 1996. “Reinforcement Learning: A Survey.” Brown University, 

RI, USA,  

32. Konolige, K., Myers, K. 1996. “The Saphira Architecture for Autonomous Mobile 

Robots.” in AI-based Mobile Robots: Case studies of successful robot systems. D. 

a. B. Kortenkamp, R. Peter and Murphy, Robin, MIT Press. 

33. Konolige, K. 1997. "Improved Occupancy Grids for Map Building." Autonomous 

Robots 4(4): 351-367. 

34. Kortenkamp, D., Bonasso, R.P., Murphy, R. 1998. Artificial Intelligence and 

Mobile Robots: Case Studies of Successful Robot Systems. Cambridge, MA, 

USA, MIT/AAAI Press. 

35. Kose, H., Akyn, H.L. 2000. "Towards a Robust Cognitive Architecture for Small 

Autonomous Mobile Robots." ISCIS XV, The Fifteenth International Symposium 

on Computer and Information Sciences: 447-455. 

36. Lee, D. 1996. “The Map-Building and Exploration Strategies of a Simple Sonar-

Equipped Mobile Robot; an Experimental Quantitative Evaluation.” University 

College London, London, UK,  

37. Lee, D. 1997. "Quantitative Evaluation of the Exploration Strategies of a Mobile 

Robot." International Journal of Robotics Research 16(4): 413-447. 

38. MacDorman, K. F. 1999. "Grounding symbols through sensorimotor integration." 

Journal of the Robotics Society of Japan(17): 20-24. 

39. Mansfield, M., Collins, J.J, Eaton, M., O’Sullivan, S., Haskett, D.  “Developing a 

statistical baseline for robot pursuit and evasion using a real world control 

architecture.” In Proceedings Ninth International Symposium on Artificial Life 

and Robots, Oita, Japan, January 2004. 

40. Marr, D. 1971. "Simple memory: a theory for archicortex." Phil. Trans. Royal 

Soc. London 262: 23-81. 

41. Martin, M. C., Moravec, H.P. 1996. “Robot Evidence Grids.” Robotics Institute, 

Carnegie Mellon University, Pittsburgh, Pennsylvania 



 239 

42. Matthies, L., Elfes, A. 1988. “Integration of Sonar and Stereo Range Data Using a 

Grid-Based Representation.” Proceedings of the 1988 IEEE International 

Conference on Robotics and Automation, Philadelphia, Pennsylvania, USA. 

43. McCulloch, W. C., Pitts, W 1943. A Logical Calculus of the Ideas of Immanent 

Nervous Activity, MIT Press. 

44. Moore, A. W., Atkeson, C.G. 1993. "Prioritized Sweeping: Reinforcement 

Learning with Less Data and  Less Real Time." Machine Learning 13: 103-130. 

45. Moravec, H. P. 1983. "The Stanford Cart and The CMU Rover." Proceedings of 

the IEEE 71(7): 872-884. 

46. Moravec, H. P., Elfes, A. 1985. “High Resolution Maps from Wide Angle Sonar.” 

Proceedings of the 1985 IEEE International Conference on Robotics and 

Automation. 

47. Moravec, H. P. 1999. “Robust Navigation by Probabilistic Volumetric Sensing.” 

DARPA ITO solicitation. PA, USA, Carnegie Mellon University. 

48. Newell, A., Shaw, J.C., Simon, H. A. 1958. “Chess-Playing Programs and the 

Problem of Complexity.” in Computers and Thought. E. Feigenbaum, Feldman, J. 

New York, McGraw Hill. 

49. Nilsson, N. J. 1984. “Shakey the Robot,” Technical Report 223, AI Centre, SRI 

International. 

50. O'Keefe, J., Nadel, L. 1978. The Hippocampus as a Cognitive Map, Oxford 

University Press. 

51. O’Sullivan, S., Collins, J. J., Mansfield, M., Eaton, M., Haskett, D. 2004. “A 

Quantitive evaluation of sonar models and mathematical update methods for Map 

Building with mobile robots.” In Proceedings Ninth International Symposium on 

Artificial Life and Robots, Oita, Japan, January 2004. 

52. O’Sullivan, S., Collins, J. J., Mansfield, M., Eaton, M., Haskett, D. 2004. “Linear 

Feature Prediction for Confidence Estimation of Sonar Readings in Map 

Building”. In Proceedings Ninth International Symposium on Artificial Life and 

Robots, Oita, Japan, January 2004. 

53. Prestes, E., Idiart, M.A.P., Engel, P.M., Trevisan, M. 2001. “Exploration 

technique using potential fields calculated from relaxation methods.” Proceedings. 

IEEE/RSJ International Conference on.Intelligent Robots and Systems, 2001.  

54. Quirk, G., Muller, R., and Kubie, J. 1990. "The firing of hippocampal place cells 

in the dark depends on the rat's recent experience." Journal of Neuroscience 10(6): 



 240 

2008-2017. 

55. Samuel, A. L. 1959. “Some Studies in Machine Learning Using the Game of 

Checkers.” Computation and Intelligence: Collected Readings. G. F. Luger, 

Menlo Park. CA/Cambridge, MA/London, AAAI Press/The MIT Press. 

56. Steels, L. 1994. “Emergent Functionality in Robotic Agents through on-line 

evolution.” Artificial Life IV. Proceedings of the Fourth International Workshop 

on the Synthesis and Simulation of Living Systems, Cambridge, MA, MIT Press. 

57. Thrun, S., A. Bücken. 1993. “Exploration and model building in mobile robot 

domains.” IEEE International Conference on Neural Networks, 1993., San 

Francisco, CA,USA. 

58. Thrun, S., A. Bücken. 1997. “Learning Maps for Indoor Mobile Robot 

Navigation.” AI Magazine. 99: 21-71. 

59. Thrun, S., Bucken, A., Burgard, W., Fox, D., Fröhlinghaus, T., Henning, D.,  

Hofmann, T., Krell, M., Schmidt, T. 1998. “Map learning and high-speed 

navigation in RHINO.” in AI-based Mobile Robots: Case Studies of Successful 

Robot Systems. D. Kortenkamp, Bonasso,  R.P., Murphy, R., MIT Press. 

60. Turing, A. M. 1950. "Computing Machinery and Intelligence." Mind 49: 433-460. 

61. Weiss, M. A. 1999. Data Structures and Algorithm Analysis in C++ (Second 

Edition), Addison Wesley Longman, Inc. 

62. Xiao, J., Michaelewicz, Z., Zhang, L., 1997. “Evolutionary Planner/Navigator: 

operator performance and self-tuning.” Proceedings of IEEE Transactions on 

Evolutionary Computation 1997. 

 



 241 

Appendices 

A1 Design Diagrams of Robot Control Architecture 

 

Fig A1 Overall view of the robot control architecture currently under development in the 

University of Limerick robotics group.  A subsection of these modules were used in 

experimentation.  The Pursuit and Evasion (PE), Localisation and Neural Net mapping (NN 

Mapping) modules are being developed by other members of the robotics group.  All other 

modules were created for this thesis. 

 



 242 

 

Fig A2 Architecture of modules used in experimentation.  This is a subsection of the complete 

robot control architecture under development in the University of Limerick robotics group. 

 

 

 



 243 

 

 

Fig A3 Interaction between RobotServiceController, ServiceControl and Mapping classes 

 



 244 

 

Fig A4 Map Storage Classes GridBlock, Grid3D and GridMap.  

 



 245 

 

Fig A5 PoseBucket class used to ignore redundant sonar readings.  It stores values in a quad 

tree representation to offset the otherwise prohibitive amount of memory necessary.  The 

quad tree storage is implemented by the GridBlockQuad and Grid3DQuad classes. 

 



 246 

 

Fig A6 The SpecularEstimator class which performs feature prediction to filter noisy sonar 

readings.  It is a child of the ServiceControl class, but unlike the Mapping class, which is also 

a child of ServiceControl, it operates in a single thread i.e. synchronously.  The WallObj class 

is used to store all necessary information for each predicted feature in the environment. 

 



 247 

A2 Experimentation Results 

Chapter 6 presented an averaged version of the experimentation results in order to 

display trends and extract meaning from the relatively large body of data.  In this 

section the results in their entirety are displayed, grouped by the environment the 

experiment was performed in. 

A2.1 AIC Simulated Environment Experimentation Results 

Mapping 

Method 

Pose 

Bucket

s 

Feature 

Predictio

n 

Matc

h  

All  

% 

Matc

h 

 Occ  

% 

Correlatio

n  

With Ideal 

% 

Invalid 

Paths 

% 

False 

Positive

s 

% 

Not 

Complete

d 

Paths 

% 

Of Ideal 

Path 

Cost 

ME85mo

d 

Yes Yes 2.96

% 

2.30

% 

88.75% 15.99

% 

0.00% 0.00% 100.12

% 

ME88mo

d 

Yes Yes 3.16

% 

2.90

% 

87.81% 24.11

% 

0.00% 0.00% 100.07

% 

K97mod Yes Yes 3.18

% 

1.99

% 

88.23% 14.73

% 

0.00% 0.00% 100.13

% 

ME85mo

d 

Yes No 4.03

% 

3.55

% 

84.13% 27.70

% 

0.00% 0.00% 100.08

% 

K97 Yes No 5.63

% 

2.53

% 

81.04% 0.00% 0.00% 5.00% 100.38

% 

ME88mo

d 

Yes No 4.52

% 

4.24

% 

82.23% 34.44

% 

0.00% 0.00% 100.17

% 

K97mod Yes No 3.19

% 

2.38

% 

87.72% 24.45

% 

0.00% 0.00% 100.09

% 

K97mod No Yes 2.78

% 

2.38

% 

89.34% 27.78

% 

0.00% 0.00% 100.08

% 

ME85mo

d 

No Yes 3.47

% 

3.30

% 

86.70% 37.42

% 

0.00% 0.00% 100.05

% 

ME88mo

d 

No Yes 4.03

% 

3.81

% 

84.37% 31.99

% 

0.00% 1.25% 100.05

% 

ME88 No No 8.95

% 

7.99

% 

67.70% 64.51

% 

3.75% 0.00% 100.00

% 

K97 No No 4.49

% 

3.31

% 

82.47% 16.39

% 

1.25% 2.50% 100.58

% 



 248 

Mapping 

Method 

Pose 

Bucket

s 

Feature 

Predictio

n 

Matc

h  

All  

% 

Matc

h 

 Occ  

% 

Correlatio

n  

With Ideal 

% 

Invalid 

Paths 

% 

False 

Positive

s 

% 

Not 

Complete

d 

Paths 

% 

Of Ideal 

Path 

Cost 

K97mod No No 6.12

% 

5.57

% 

76.59% 61.00

% 

1.25% 0.00% 100.08

% 

ME88mo

d 

No No 7.30

% 

6.66

% 

72.49% 59.03

% 

2.50% 0.00% 100.00

% 

ME85 No No 8.76

% 

7.00

% 

68.86% 65.76

% 

2.50% 0.00% 100.00

% 

ME85mo

d 

No No 6.93

% 

6.14

% 

74.34% 58.99

% 

1.25% 0.00% 100.07

% 

 

 

 



 249 

A2.2 Corridor Simulated Environment Experimentation Results 

Mapping 

Method 

Pose 

Bucket

s 

Feature 

Predictio

n 

Match 

All  

% 

Matc

h  

Occ  

% 

Correlatio

n  

With Ideal 

% 

Invali

d 

Paths 

% 

False 

Positive

s 

% 

Not 

Complete

d 

Paths 

% 

Of 

Ideal 

Path 

Cost 

ME85mo

d 

Yes Yes 5.68% 3.44

% 

82.22% 28.66

% 

0.00% 0.00% 100.00

% 

ME88mo

d 

Yes Yes 6.05% 3.67

% 

81.51% 30.28

% 

0.00% 0.00% 100.00

% 

K97mod Yes Yes 6.42% 3.33

% 

80.47% 12.30

% 

0.00% 0.00% 100.00

% 

K97mod Yes No 6.19% 3.66

% 

80.55% 19.43

% 

0.00% 0.00% 100.00

% 

K97 Yes No 9.44% 4.41

% 

74.06% 0.00% 0.00% 0.00% 100.00

% 

ME85mo

d 

Yes No 7.38% 4.61

% 

76.66% 31.98

% 

0.00% 0.00% 100.00

% 

ME88Mo

d 

Yes No 7.72% 4.81

% 

76.21% 42.01

% 

0.00% 0.00% 100.00

% 

ME85mo

d 

No Yes 7.81% 4.49

% 

75.72% 46.52

% 

0.00% 0.00% 100.00

% 

ME88mo

d 

No Yes 9.02% 5.24

% 

72.72% 49.55

% 

0.00% 0.00% 100.00

% 

K97mod No Yes 6.34% 3.73

% 

80.15% 38.29

% 

0.00% 0.00% 100.00

% 

ME88mo

d 

No No 13.21

% 

6.99

% 

63.61% 56.40

% 

0.00% 0.00% 100.00

% 

ME88 No No 17.74

% 

9.24

% 

53.23% 74.68

% 

0.00% 0.00% 100.00

% 

ME85 No No 18.34

% 

8.24

% 

54.62% 57.73

% 

0.00% 0.00% 100.00

% 

K97mod No No 11.87

% 

6.71

% 

66.46% 67.96

% 

0.00% 0.00% 100.00

% 

ME85mo

d 

No No 14.85

% 

7.44

% 

59.80% 51.50

% 

0.00% 0.00% 100.00

% 

K97 No No 8.25% 5.37 74.46% 15.68 0.00% 0.00% 100.00



 250 

Mapping 

Method 

Pose 

Bucket

s 

Feature 

Predictio

n 

Match 

All  

% 

Matc

h  

Occ  

% 

Correlatio

n  

With Ideal 

% 

Invali

d 

Paths 

% 

False 

Positive

s 

% 

Not 

Complete

d 

Paths 

% 

Of 

Ideal 

Path 

Cost 

% % % 

 

 



 251 

A2.3 CSIS Building 1
st
 Floor Simulated Environment Experimentation Results 

Mapping 

Method 

Pose 

Bucket

s 

Feature 

Predictio

n 

Match 

All  

% 

Match 

Occ % 

Correlatio

n  

With  

Ideal 

% 

Invali

d 

Paths 

% 

False 

Positive

s 

% 

Not 

Complete

d 

Paths 

% 

Of 

Ideal 

Path 

Cost 

ME85mo

d 

Yes Yes 3.50% 3.77% 83.91% 15.52

% 

0.00% 3.70% 100.05

% 

K97mod Yes Yes 3.33% 3.40% 85.00% 1.95% 0.00% 3.70% 100.08

% 

ME88mo

d 

Yes Yes 3.52% 3.82% 83.90% 22.22

% 

0.00% 3.70% 100.07

% 

K97 Yes No 4.38% 3.50% 81.22% 3.97% 0.00% 11.11% 100.08

% 

K97mod Yes No 3.56% 3.81% 83.71% 13.47

% 

0.00% 3.70% 100.12

% 

ME85mo

d 

Yes No 6.08% 5.72% 72.91% 43.09

% 

3.70% 3.70% 100.01

% 

ME88mo

d 

Yes No 6.69% 6.83% 70.29% 42.65

% 

3.70% 3.70% 100.00

% 

ME85mo

d 

No Yes 3.94% 4.35% 81.83% 39.50

% 

0.00% 3.70% 100.05

% 

ME88mo

d 

No Yes 3.99% 4.34% 81.81% 38.41

% 

0.00% 3.70% 100.07

% 

K97mod No Yes 3.33% 3.66% 84.70% 14.91

% 

0.00% 3.70% 100.09

% 

K97mod No No 9.69% 8.76% 59.81% 65.64

% 

3.70% 3.70% 100.00

% 

ME88mo

d 

No No 12.12

% 

10.79

% 

52.55% 65.31

% 

3.70% 3.70% 100.02

% 

K97 No No 4.58% 4.76% 79.05% 9.55% 0.00% 7.41% 100.26

% 

ME85 No No 13.31

% 

9.57% 51.57% 75.88

% 

7.41% 3.70% 100.00

% 

ME88 No No 14.30

% 

12.49

% 

46.81% 67.38

% 

3.70% 3.70% 100.02

% 

ME85mo No No 12.02 8.86% 54.60% 74.03 7.41% 3.70% 100.00



 252 

Mapping 

Method 

Pose 

Bucket

s 

Feature 

Predictio

n 

Match 

All  

% 

Match 

Occ % 

Correlatio

n  

With  

Ideal 

% 

Invali

d 

Paths 

% 

False 

Positive

s 

% 

Not 

Complete

d 

Paths 

% 

Of 

Ideal 

Path 

Cost 

d % % % 

 

 

 



 253 

A2.4 Star Simulated Environment Experimentation Results 

Mapping 

Method 

Pose 

Bucket

s 

Feature 

Predictio

n 

Match 

 All % 

Match 

Occ % 

Correlatio

n  

With Ideal 

% 

Invali

d 

Paths 

% 

False 

Positive

s 

% Not 

Complete

d 

Paths 

% Of 

Ideal 

Path 

Cost 

ME85mo

d 

Yes Yes 8.61% 6.70% 76.07% 0.00% 0.00% 0.00% 100.50

% 

K97mod Yes Yes 8.79% 6.77% 75.95% 0.00% 0.00% 3.70% 100.00

% 

ME88mo

d 

Yes Yes 11.97

% 

10.51

% 

65.97% 12.50

% 

0.00% 0.00% 100.00

% 

ME88mo

d 

Yes No 16.63

% 

14.25

% 

56.07% 60.66

% 

0.00% 0.00% 100.00

% 

ME85mo

d 

Yes No 11.58

% 

9.02% 68.29% 1.74% 0.00% 10.71% 100.03

% 

K97 Yes No 15.02

% 

10.74

% 

62.91% 0.00% 0.00% 39.29% 101.41

% 

K97mod Yes No 10.11

% 

8.36% 72.30% 97.67

% 

0.00% 0.00% 100.00

% 

ME85mo

d 

No Yes 10.83

% 

10.07

% 

70.87% 33.92

% 

0.00% 0.00% 100.00

% 

ME88mo

d 

No Yes 13.44

% 

11.88

% 

64.04% 38.12

% 

0.00% 0.00% 100.00

% 

K97mod No Yes 11.16

% 

10.19

% 

69.10% 91.21

% 

0.00% 0.00% 100.00

% 

ME85 No No 26.70

% 

18.49

% 

43.03% 90.17

% 

0.00% 0.00% 100.00

% 

ME88mo

d 

No No 19.89

% 

16.14

% 

52.62% 79.40

% 

0.00% 0.00% 100.00

% 

K97 No No 24.09

% 

20.48

% 

45.94% 0.00% 0.00% 64.28% 107.13

% 

K97mod No No 20.75

% 

17.77

% 

50.27% 97.78

% 

0.00% 0.00% 100.00

% 

ME85mo

d 

No No 18.03

% 

14.04

% 

57.52% 61.77

% 

0.00% 0.00% 100.00

% 

ME88 No No 26.10

% 

20.41

% 

43.54% 81.68

% 

0.00% 0.00% 100.32

% 



 254 

 



 255 

A2.5 Star Real-World Environment Experimentation Results  

Mapping 

Method 

Pose 

Buckets 

Feature 

Prediction 

Match 

All  

% 

 

Match 

Occ  

% 

 

Correlation 

With Ideal 

% 

Invalid 

Paths 

% 

False 

Positives 

% 

Not 

Completed 

Paths 

% 

Path 

Cost 

K97 No No 585.55 454.96 48.52% 26.71% 7.14% 14.28% 102.04% 

K97 Yes No 344.26 257.63 67.08% 9.23% 0.00% 10.71% 100.05% 

K97mod No No 704.47 461.34 49.77% 66.26% 0.00% 0.00% 100.00% 

K97mod No Yes 441.22 366.55 61.61% 59.22% 0.00% 0.00% 100.00% 

K97mod Yes No 339.62 291.94 67.91% 54.11% 0.00% 0.00% 100.00% 

K97mod Yes Yes 296.59 243.13 71.17% 19.55% 0.00% 0.00% 100.00% 

ME85 No No 889.3 499.06 43.08% 60.00% 0.00% 0.00% 100.10% 

ME85mod No No 445.3 395.94 59.53% 29.59% 0.00% 0.00% 100.10% 

ME85mod No Yes 393.57 344.14 62.14% 37.47% 0.00% 0.00% 100.10% 

ME85mod Yes No 395.05 314.36 62.61% 24.39% 0.00% 3.57% 100.39% 

ME85mod Yes Yes 332.48 270.57 67.16% 24.01% 0.00% 3.57% 103.43% 

ME88 No No 806.71 471.2 43.18% 72.29% 0.00% 0.00% 102.04% 

ME88mod No No 471.14 419.62 57.62% 37.87% 0.00% 0.00% 100.00% 

ME88mod No Yes 440.55 392.68 54.88% 42.94% 0.00% 0.00% 100.00% 

ME88mod Yes No 464.8 389.07 59.51% 49.74% 0.00% 0.00% 100.00% 

ME88mod Yes Yes 414.38 364.36 61.67% 40.77% 0.00% 0.00% 100.00% 

  



 256 

A3 Sample Maps Generated In Simulated Experimentation 

The following six maps were generated in a simulated run around the CSIS building 

in the University of Limerick  All six of the map building systems tested in 

experimentation are used, without Feature Prediction and without Pose Buckets. 

 

Fig A7 Map generated of the eCSBsim environment by the ME85 map building system, which 

uses neither pose bucket nor feature prediction. 

 



 257 

 

Fig A8 Map generated of the eCSBsim environment by the ME88 map building system, which 

uses neither pose bucket nor feature prediction. 

 

 

Fig A9 Map generated of the eCSBsim environment by the ME85mod map building system,  

with feature prediction and pose buckets disabled. 

 

 



 258 

 

Fig A10 Map generated of the eCSBsim environment by the ME88mod map building system,  

with feature prediction and pose buckets disabled. 

 

 

Fig A11 Map generated of the eCSBsim environment by the K97 map building system, with 

pose buckets disabled. K97 does not use feature prediction. 

 



 259 

 

Fig A12 Map generated of the eCSBsim environment by the K97mod map building system,  

with feature prediction and pose buckets disabled. 

 

 



 260 

These final four maps are designed to show the effect of Pose Buckets and Feature 

Prediction on the quality of the map generated.  For this example, the ME85mod map 

building system was used to generate a map of the eCSBsim environment.  

 

Fig A13 Map generated of the eCSBsim environment by the ME85mod map building system,  

with feature prediction and pose buckets disabled. 

 

Fig A14 Map generated of the eCSBsim environment by the ME85mod map building system, 

with feature prediction disabled and pose buckets enabled. 



 261 

 

Fig A15 Map generated of the eCSBsim environment by the ME85mod map building system,  

with feature prediction enabled and pose buckets disabled. 

 

 

Fig A15 Map generated of the eCSBsim environment by the ME85mod map building 

system,  with feature prediction and pose buckets enabled. 

 

 



 262 

A4 Introduction to Probability 

An experiment is any action or process that generates observations, and a sample 

space of an experiment is the set of all possible outcomes of that experiment.  An 

event is any collection or subset of outcomes contained in the sample space.  While an 

experiment that is performed just a few times may return some very erratic results, as 

the number of test runs, n, gets arbitrarily large, the results smooth out and approach 

what is called the limiting relative frequency.  Probabilities can then be assigned to 

events based of their limiting relative frequency.  However, since the probability of an 

event relies on its l.r.f, its applicability is limited to experiments that are repeatable. 

 

If an event is certain to happen, it is said to have a probability of 1.  If it is certain not 

to happen, it has a probability of 0.  And if any particular event has a probability, 

P(A), the probability of it not occurring is 1-P(A). 

 P(A) = 1 – P(A’) 

The probability of two non-mutually exclusive events occurring is: 

 P(A ∪ B) = P(A) + P(B) – P(A ∩ B) 

Mutually exclusive means that A and B have no outcomes in common, therefore: 

 P(A ∩ B) = 0 

If all outcomes are equally likely, determining the probability of some event is 

reduced to simple counting. 

 P(A) = N(A) / N 

Where N(A) is the number of outcomes contained in event A.   

 

Conditional Probability 

The fact that one event, B, has occurred can sometimes affect the probability of 

another event, A, occurring.  This is represented with P(A | B), which means the 

conditional probability of A given that the event B has occurred.  

P(A | B) = P(A ∩ B) / P(B) 

And it follows that P(A ∩ B) = P(A | B) * P(B). 

Bayes Theorem 

The law of total probability states that for any event B, and events A1, …. An which 

are mutually exclusive and exhaustive, 

P(B) = ∑ P(B | Ai) P(Ai). 



 263 

Bayes uses this to prove that for A1, …. An, a collection of n mutually exclusive 

events with P(Ai) > 0 for i = 1, … n, for any other event B for which P(B) > 0: 

( ) ( ) ( )
( ) ( )∑

=
ik

kk

k
APABP

APABP
BAP

*|

|
|  

Independence  

Two events are said to be independent if P(A | B) = P(A), and are dependent 

otherwise.  If two events are mutually exclusive, they cannot be independent, since 

when A and B are mutually exclusive, the information that A has occurred says 

something about B (it cannot have occurred), so independence is impossible.  A and B 

are independent only if: 

P(A ∩ B) = P(A) * P(B) 

 

The Expected Value of X 

The expected, or mean (average) value of a random variable X, denoted by E(X) is 

( )∑
∈Dx

ypx*  

 

The Expected Value of h(X) 

Often we will be interested in the expected value of some function h(X), rather than X 

itself.  If the random variable X has a set of possible values D and a p.m.f. p(x), then 

the expected value of any function h(X) is computed by: 

 ( )[ ] ( ) ( )xpxhXhE
D

*∑=       
 

But if this function is a linear function, such as  

 aX + b 

then  E(aX + b) = a * E(X) + b 

 

The Variance of X 

While the expected value of X determines where the probability distribution is 

centred, the variance measures how great the spread of the distribution is, or how 

dispersed it is. 

The variance of X,  ( ) ( ) ( ) ( )[ ]22
* µµ −=−= ∑ XExpxXV

D

 



 264 

For the random variable X with a probability mass function p(x) and expected value 

µ.  The variance can also be denoted by σ2. 

 

The standard deviation 2σσ =  

A quicker way to calculate the variance, V(X), is 

 V(X) = E(X
2
) – [E(X)]

2
 

Which reduces the number of calculations considerably. 

 

The Normal Distribution 

A continuous random variable X is said to have a normal distribution with 

parameters µ and σ where -∞ < µ < ∞ and 0 < σ, if the probability density function of 

X is   

( ) ( ) ( ) ∞<<∞−= −− xe;;xf x 22
2

2

1 σµ

σπ
σµ  

The statement that X is normally distributed is often abbreviated to X ~ N(µ,σ2
).  A 

normal curve is bell shaped, and therefore symmetrical.  The mean, µ, is at the peak of 

the curve, and the standard deviation from the mean, σ, is the distance from µ to the 

inflection points of the curve.   

 

The Standard Normal Distribution  

As it can become quite complex to compute a normal curve, we use what is called the 

Standard Normal Distribution, which has µ = 0 and σ = 1.  A random variable, z, that 

has a standard normal distribution is called s standard normal random variable.    

 ( ) ∞<<∞−= − zezf z 22

2

1
1,0;

π
 

The cumulative distribution function of Z is  

( ) ( )dyyfzZP
z

1,0;∫ ∞−
=≤ , which we denote as Φ(z). 

 

Percentiles of the Standard Normal Distribution 

For any number, p, between zero and one, the standard normal distribution tables can 

be used to find the (100p)th percentile of the standard normal distribution.  For 



 265 

example, find which point on the curve has 90% of the area under the curve to its left, 

and 10% to the right. 

 

zαααα Notation 

We will use zα to denote the value on the horizontal axis which has α of the area 

under the curve to the right of zα.  zα is often referred to as a z critical value, and can 

be found in standard normal distribution tables. 

 

Non-standard Normal Distributions 

When a normal distribution is not standard, it can be computed by standardising its 

values. Subtracting the mean, µ from the random variable X shifts the mean to zero, 

and dividing the result by σ scales the variable so that the standard deviation is 1 

instead of σ.  Therefore, if X is a random variable with a normal distribution,  

( ) σµ−= XZ  

is a standard normal random variable. 

 

In order to calculate the (100p)th percentile of a normal distribution, first calculate the 

(100p)th percentile for the standard normal distribution, multiply it by the standard 

deviation of the distribution, σ, and add the mean. 

(100p)th percentile for normal (µ,σ)=µ + [(100p)th percentile for standard normal]* σ 

 

Approximating Discrete Populations with the Normal Distribution 

The normal distribution can be used to approximate discrete populations.  Discrete 

populations can be modelled using a histogram, with the rectangles centred at 

integers.  To approximate the area greater than a particular integer, e.g. 5, it is 

necessary to measure the area to the right of 4.5 i.e. P(X ≥ 4.5). 

 

Joint Probability Distributions and Random Samples 

It is often the case that more than one random variable will be of interest in an 

experiment.  It follows that we must model the joint probability distribution of these 

random variables. 

 



 266 

Covariance 

When two random variables are dependent, it is often of interest to what degree they 

are related to one another.  The covariance between two random variables X and Y is  

( ) ( )( )[ ]
( )( ) ( )

( )( ) ( ) continuousYX

discreteYX

dydxyxfyx

yxpyx

YXEYXCov

yx

x y

yx

yx
,

,

,

,

,








−−

−−
=−−=

∫

∑∑
∞

∞−
µµ

µµ
µµ  

 

The problem with covariance is that its result depends strongly on the units of 

measurement used in the experiment.  To remedy this, we use the correlation 

coefficient. 

 

Correlation 

The correlation coefficient of X and Y, denoted Corr(X, Y), ρx,y or ρ, is  

 
( )

yX

yx

YXCov

σσ
ρ

*

,
, =  

Some important properties of correlation are that 

1. The correlation coefficient is not affected by a linear change in the units of 

measurement, i.e. Corr(aX + b, cY + d) = Corr(X, Y) 

For and two random variables X and Y,  –1 ≤ Corr(X, Y) ≤ 1 

 

 



 267 

A5 Robot Simulators 

Here follows a selection of the mobile robot simulators currently available. 

1. ARC – Autonomous Robot Controller 

• May be connected to an external controller programmed by the user 

• Can control multiple robots interacting in the environment. 

• Geometric, physical and dynamic configuration of each robot. 

• Graphic visualisation of the virtual world, robots and database. 

• Permits insertion of various types of static and rotary sensors into the 

robot. 

• Objects and obstacles with geometry and physical characteristics. 

• Robots are limited to movement in 2 dimensions. 

• The robots must be ones with 2 independent motorised wheels. 

• Supports Win 98/2000, NT. 

• Freeware 

 

2. BugWorks – 2D Robot Simulator and eTutor 

• Drag and drop interface. 

• Integrated tutor 

• Designed with students with no programming experience in mind. 

• Used language, ‘BugScript’. 

• Available for Java 1 and 2, runs as an applet. 

 

3. EyeSim – Eyebot simulator. 

• Allows testing and debugging of EyeBot applications on a Unix 

platform. 

• Allows robot to drive in simulated 2D environment, with all its sensors 

and actuators. 

• Multiple robot simulator, simulated sensors – bumper, PSD, IR-Proxy. 

• Simulated actuators: v- omega differential driving. 

• Parameter settings can be changed via menu for errors in velocity, 

sensor ranges, robot size. 

• Eyebot is a controller for robots with wheels, walking or flying robots. 



 268 

4.  WebBots 3 

• 3D robot simulator which simulates any robot using two-wheeled differential 

steering. 

• Model robots and world using VRML-style language. 

• Design behaviour of robot in C++. 

• Distance sensors: infrared and sonars. 

• Emitters: infrared and radio. 

• Receivers: infrared and radio. 

• Supports Linux and PC. 

• Design supervisor program to monitor simulations in C++. 

• Simulation cannot be transferred to a real robot. 

  

5. Millbots Simulator 

• Written in Java – multi-platform support. 

•  Dynamically configurable control and interface – drag and drop robots during 

operation, add obstacles during operation. 

• Multiple robots with different configurations. 

• Robot can be local or distributed. 

• Support for hierarchical teams. 

• Supports timed events. 

 

6. Flat 

• Simulates an RWI robot – a circular, sonar-guided robot – in a flat 2D world, 

with simulated sonar and laser rangefinder sensors. 

• Contains an accurate physical simulator and accurate sonar and laser 

rangefinder simulators. 

• The simulated robot has internal odometry, one or two range finders, and 

twelve sonar sensors. 

• Can design own 2D floor plan to simulate a building or space. 

• Define the robot environment, including multi-level worlds. 

• Sensors include optional noise models. 

• LISP program Flat Client provides all low-level command to control the robot. 

• Supports Sun and x86 Linux machines. 



 269 

 

7. MobotSim – Mobile Robot Simulator 

• Supports Win 9x/Me/NT/2000 

• 2D simulation of differential drive mobile robots 

• Unlimited number of Mobots and obstacles. 

• Flexible configuration of Mobots – platform diameter, wheels diameter, 

number of sensors, and angle between sensors. 

• Configuration of ranging sensors – radiation cone, range, misreading 

percentage. 

• Easy integration of 3
rd
 party ActiveX controls and .dll files.   

• Can add specific tools to the BASIC editor to make use of Fuzzy Logic, 

Genetic Algorithms, Neural Networks etc. 

• Motor errors and wheel slippage not simulated. 

• Angle of incidence and surface features of objects not considered. 

 

8. MOBS – Mobile Robot Simulator 

• Fully 3D simulation system. 

• Can be connected to a robot application program even without re-compilation 

of the application. 

• Sensors modelled are: odometry, bumpers, sonar, camera view. 

• Applications include – following road markings, autonomous cars in highway 

traffic, planning and coordination of multiple autonomous agents in factory 

environments, convoy driving. 

 

9. Netmaze 

• 3D simulation environment. 

• Client – server architecture. 

• Real-time interactions. 

• Can be used for robot navigation, behaviour, artificial vision, multi-agent 

systems etc. 

• Environment consists of walls only. 

• 256 sensors placed around robot to indicate collisions with walls or other 

agents. 



 270 

• Range finder covers the visual are – indicates distance between objects and the 

agent. 

• Runs on Linux with X11 and OpenGL. 

 

10. Player/Stage – Networked Transducer Interface / Multiple robot simulator 

• Player is a device server that provides an interface to sensors and actuators. 

• Robot control programs can be written in any language. 

• Support for multiple concurrent connections to devices. 

• Supports ActivMedia Pioneer 2-DX robot, SICK LMS-200 laser rangefinder, 

Sony EVID-30 camera, sound hardware, ACTS colour vision system and the 

Festival speech synthesis system. 

• Runs on Linux and Unix. 

• Stage is a scaleable multiple robot simulator. 

• 2D bitmapped. 

• It provides sonar, scanning laser rangefinder, pan-tilt-zoom camera and 

odometry. 

• Little or no changes required to move from simulation to hardware. 

• Free to distribute and modify. 

 



 271 

A6 UL Robotics Group Software Architecture Manual 

 

The UL Robotics Group Architecture Manual 

 

 

 

 

 

August 2003 

 

 

 

 

 

 

Shane O’Sullivan 

 



 272 

UL Robotics Group Software Architecture Manual 

The architecture used by the UL robotics group to control mobile robots is designed to 

be as flexible as possible, while at the same time standardising an interface to a family 

of services that can be used to control a mobile robot.  The architecture is based upon 

the use of modules, either in isolation or in conjunction with one or more other 

modules.  Each module is responsible for a single task, be it map building, 

localisation, pursuit, evasion or whatever.  These modules must be coordinated by a 

central controller.  This ensures that modularity is preserved, and that no one module 

relies upon another in order for it to operate, though it may function better if another 

module is also in use – for example, a mapping service will work better if a 

localisation service is constantly confirming its position, but it can work without it.   

 

While the standard configuration will be that the central controller will be the client of 

the service, it is also possible for services to be clients of other services.  An example 

of this is the ME88mod class which, while being a mapping service, is also a client of 

the SpecularEstimator class.  The mechanism for achieving this is detailed at the after 

the description of the ServiceControl class. 

 

ServiceControl 

The primary object in the architecture is the ServiceControl class.  Each service in the 

architecture inherits from the ServiceControl class.  The only requirement is that the 

service defines a function called processQueue which will use the information sent to 

the module. The ServiceControl class has a number of features: 

1. Multiple client support, with each client having an individual profile that 

guides how the service uses the information provided to it by that client. 

2. An information Repository 

3. Control of threading of a service. 

4. Support of different callback interfaces through the use of templates. 

 



 273 

ServiceControl’s Multiple Client Support 

The ServiceControl class offers support for multiple clients of a service through the 

use of the registerClient function.  An example of this is multiple robots being used to 

simultaneously build a single map. 

 

Each client who want to use a service must first register with it using the 

registerClient function.  This serves a number of purposes.   

 

Firstly, if the client wants the service to perform callbacks on it can pass a C++ 

pointer to itself in the first parameter of the function.  The other parameters provide 

information regarding the client’s robot, such as the number of sonars, their positions 

on the robot (in a circular ring), and the robot’s radius. 

 

RegisterClient has a return type of int.  If the registration is unsuccessful, for example 

if the maximum number of clients has already been reached, then the function returns 

–1.  If the registration is successful the function returns a positive integer which is the 

clients’ Client Number.  This number must be passed to the service each time a push 

function is called so that the service can know which client the information belongs 

to, and can use the correct robot profile as a consequence.  This number must also be 

passed to the unRegisterClient function when unregistering the client from the 

service. 

 

A client can also register with a service as a listener.  This means that it cannot update 

the service’s sonar readings, but will be notified of any changes through callback, just 

like a normal client would be.  This can be done by passing a pointer to the client as 

the first parameter to registerClient, but setting the number of sonars to zero, as well 

as the sonarPositions pointer.  If this is done, any call to updateSonar will fail, but a 

call to updatePose can still succeed. 

 

If the service needs the clients information, such as sonar positions or robot radius, it 

can get it from the clientProperties array.  This array is of type SensorSet which stores 

all necessary information regarding the client, including the pointer to the client.  For 



 274 

example, if a readings is popped from a queue, and it came from a client with a client 

number 5, then the robot radius for that client is stored in  

  

See the commonDefs.h header file for the current list of parameters stored in the 

SensorSet object.  At time of writing, August 2003, SensorSet is as follows: 

  

 

  

 



 275 

The ServiceControl Information Repository 

The ServiceControl class acts as an information repository.  All information passed to 

the module must be send to this class, using the various push… functions (currently 

pushSonar and pushPose).  The information is placed in a queue and can be accessed 

by the service inheriting from ServiceControl using the various pop functions 

(currently popSonarReadingsQueue and popPoseQueue).  When a pop function is 

called, one item is removed from the head of the queue and placed in the object 

passed to the function, which is of type SensorReadingSet(defined in the 

commonDefs.h header file).  The SensorReadingSet object stores everything that the 

service needs to know about that reading, the robot position, the sonar readings it 

received etc. 

 

Because some service will be running with multiple threads, there could possibly be a 

conflict when pushing a reading onto a queue and popping a reading off in a different 

thread.  Because of this, mutual exclusion is enforced on each queue by the push and 

pop functions, which removes the possibility of any conflict. 

 

Each instance of a service, be it mapping, localisation or whatever, inherits from the 

ServiceControl class, and therefore there is one instance of a ServiceControl class for 

each service, with each service having its own queues.  It is up to the central control 

module to decide what information is passed to which service.  If the same 

information, e.g. robot position, is passed to two different services, two separate 

copies of it will exist, and if one service pops and processes the information, this will 

have no effect on the other service. 

 

The SensorReadingSet object, as it is currently written, is prone to memory leaks.  

When the service pops the object off a queue, after it is finished with it the service 

must delete the ranges array if the object came from the sonar queue. 

 



 276 

The ServiceControl Threading Service 

ServiceControl handles the single or multi-threading of a service.  If a service uses 

little processing power and can be expected to run in real time it can instruct the 

ServiceControl to run in single threaded mode.  This is done in the constructor of the 

child class by passing the parameter false to the constructor of the ServiceControl 

class.  For example, the SpecularEstimator class’ constructor looks as follows: 

 

As can be seen, when the SpecularEstimator constructor invokes the ServiceControl 

constructor, it passes the value false to it, indicating that the service is to be single 

threaded.  true is the default value of the ServiceControl constructor, so if no value is 

passed to it, then it is assumed that the service is multi-threaded.  The service’s name 

can also be set here as well as the maximum number of clients allowed. 

 

When a service is single threaded, each time new information is sent to it by the push 

functions, the function defined by the service whose purpose it is to use this 

information, processQueue, is called.  If the service is multi-threaded (set by passing 

true to the ServiceControl constructor), then processQueue is spooled off in its own 

thread when the service is created, and is never called again after this.  The thread is 

closed when the service is destroyed. 

 

Because the processQueue function can be treated in two different ways, either single 

or multi-threaded, it is necessary to write it in two different ways.   

 



 277 

The single-threaded mode is the simplest.  Since the function will be called each time 

new information is received, all it must do is pop one piece of information off the 

queue, use it and terminate.  An example of this is the SpecularEstimator class’ 

processQueue function: 

  

Here, an object of type SensorReadingSet is declared and passed to the 

popSonarReadingsQueue function.  If the function returns true then a readings has 

been popped and placed in the reading variable.  If not then the queue is empty. 

 

The multi-threaded version of processQueue is slightly more complex.  Since it is 

only invoked at creation time, it must run in an infinite loop, constantly checking the 

queue to see if there is anything new on it. 

  

In the example above, when the function is executed it begins an infinite loop.  Inside 

this loop it continually pops off readings form the queue and uses them in whatever 

way is appropriate for that service – map building, localisation or whatever.  If there 

are no readings on the queue (i.e. when the pop function returns false) it is a good idea 

to make the thread sleep for a short time.  This saves it from using processor time 

constantly looping, waiting for a reading to come in. 

 

If the programmer does not want the service to sleep when there are no readings on 

the queue, and would rather simply keep checking for new readings, an alternate 

version of the processQueue function is: 



 278 

  

 



 279 

ServiceControl’s support for Interface-Based Callbacks 

As mentioned earlier, ServiceControl supports client callbacks.  This means that while 

the client of the service can update the service using the push functions, the service 

can also update the client by calling a specified function specific to that service.  For 

example, mapping services update the client using the function updateLocalCopy to 

update the clients’ local copy of a map, whereas localisation service (currently not 

implemented) can update the client using a function called updateRobotPosition. 

 

Because of the way types and function calls on objects work in C++, this is 

implemented using interfaces.  This means that if a service attempts to make a 

function call on an object, that object must have defined that function first.  While this 

is not intended as a tutorial on object oriented (OO) interfaces, a short explanation of 

this area might be necessary. 

 

An interface lists the public functions of a class.  In C++ an interface is a class with 

no implementation, and one or more functions defined as pure virtual.  Any class 

that inherits from that interface must implement those functions declared in the 

interface, or it will not be compiled.  Because the object inherits from the interface (or 

‘implements the interface’ in OO terminology), it can be referred to using a pointer to 

that interface type, though by doing this only the functions listed in that interface can 

be called.  If the object has other public functions that are not listed in the interface 

they cannot be referred to by using a pointer to the interface, a pointer to the object 

type itself is required. 

 

Since different services will need to use different callback functions with different 

parameters, the ServiceControl class has to support calls any kind of interface, even 

interfaces that have not yet been implemented.  It has to store pointers to the clients 

who have implemented these interfaces (from the registerClient function’s 1
st
 

parameter).  It is up to the service itself if and when a callback is executed. 

 



 280 

To achieve this, the ServiceControl class is a template class.  When a service inherits 

from ServiceControl it must specify the interface it makes callbacks to in its 

constructor.  An example of this is the Mapping service’s constructor: 

 

Here the Mapping service tells ServiceControl that it makes callbacks to the 

MapUpdateInterface interface, and that it is multi-threaded (passing the true 

parameter).  The MapUpdateInterface class looks like below: 

 

The word virtual before the function prototype and the =0 after it specifies that the 

object is an abstract base class, and since there are no non-pure virtual functions in the 

class it is an interface. 

 

If a service does not need to make callbacks it inherits from ServiceControl using the 

template int as was seen in the example of SpecularEstimator earlier. 

 

Unfortunately, because of the problems C++ linkers currently have with templates (a 

long and boring subject I won’t go into here), for each template version of 

ServiceControl required in the framework, it is necessary to declare this at the 

beginning of the ServiceControl.cpp file that defines the class.  At time of writing 

there are two templates defined, which is done like below: 

  

This creates two version of the ServiceControl object during compilation and linking.  

If, for example, a new interface called LocalisationUpdateInterface were to be 

created, and a localisation service was required to make callbacks to that interface, the 

two lines above would become: 

  

 

 



 281 

For an example of a simple class inheriting from and using ServiceControl with 

callbacks and multi-threading look at the RecordTestRun class.  For an example of a 

class working in single-threaded mode with no callbacks, look at the 

SpecularEstimator class.  Below is the class definition of ServiceControl  as of 

August 2003. 

 

 

 



 282 

Extending the ServiceControl class 

It is of course possible to extend the ServiceControl class (though matching the 

original authors, how shall we put it….. brilliance will take a bit more effort ☺).  

Below is the procedure for adding a new queue to the ServiceControl class.  Other 

means of extending the class can not be anticipated, and are therefore not explained.  

If any more information is required on the architecture, either about extending it or 

just general questions, email shane.osullivan@don’t-even-think-about-it.com 

To add a new queue to the object, a number of things must be done.   

1. Declare the queue in the class header file, as with sonarReadingQueue and 

poseQueue. 

2. Define an object of type SosMutex object for the queue (like 

sonarQueueMutex), which will be used by the push and pop functions to avoid 

errors reading and writing from and to the queue with multiple threads. 

3. Define a push function for the queue.  This function must accept a client 

number, like the current two push functions do.  It must also validate the 

client’s client number.  All client numbers are ≥ 0, and less than the variable 

maxClients (default value is 50 if not set by the service).  This can be checked 

as follows: 

  

If a client exists with the number provided the function, then the entry with 

that number in the clientNumbers Boolean array will be set to true.  This is 

done as follows: 

 

Now a object of type SensorReadingSet must be declared, and all the 

necessary information copied into it – for example in pushSonar the robot’s 

position, orientation and sonar ranges are copied into it. 

Before pushing the reading onto the queue, it must first be checked if the 

service is running in multi-threaded mode, and if it is it is necessary to lock the 

mutual exclusion variable for that queue, as follows: 



 283 

  

Next, push the SensorReadingSet object onto the queue, and unlock the mutex 

variable. 

Finally, if the class that has inherited from ServiceControl is operating in 

single-threaded mode the processQueue function must be called.  This is done 

as follows: 

  

The yieldProcessor function call is optional.  It takes control of the CPU from 

this thread and allows another thread to take over.  This speeds up processing 

a little on services that are heavy on CPU usage since the processing thread 

doesn’t have to wait as long to gain control of the CPU. 

4. Define a pop function for the queue.  This function should look similar to the 

two already defined, return a Boolean true if it succeeded and false if the 

queue is empty.  It should take one parameter as an argument, an object of 

type SensorReadingSet passed by reference.  It should also check if the service 

is operating in multi-threaded mode, and if it is, place a mutex lock and unlock 

around the popping of the queue, as shown below: 

 



 284 

Services becoming clients of other services 

Client-server communication is generally quite simple in this architecture – the client 

creates the server, sends it information, receives callbacks or polls the service for 

information, and finally deletes it.  However, when a child of the ServiceControl class 

is a client of another child of the ServiceControl object, a slight change must be made.  

An example of this can be seen in the ME85mod, ME88mod and K97mod mapping 

classed.  Each of these is a client of the SpecularEstimator service.  Every time a new 

client registers with ME88mod, it must also register this client with the 

SpecularEstimator service.  (As a side note, ME88mod both creates and deletes the 

instance of SpecularEstimator, and so can be said to ‘fully own’ it.  It is of course 

possible for the second service to exist outside the client service, with perhaps a 

pointer to the second service being passed to the client service in the constructor, 

though this has not been implemented yet.) 

 

ME88mod ensures that each new client is registered with a SpecularEstimator class 

by redefining the registerClient function from ServiceControl, as follows: 

 

Since registerClient is defined as virtual in ServiceControl, when it is called by the 

client, the registerClient function from ME88mod is executed, and not the 

registerClient from ServiceControl.  In the function above we can see that ME88mod 

calls the registerClient function from its parent class to take of all the usual things the 

function does.  It then creates a new service of type SpecularEstimator, stores a 

reference to it in an array of pointers to the SpecularEstimator type, and registers its 

new client with that service.  All of the objects of type SpecularEstimator are 

destroyed either when the client unregisters or when in the class destructor.  As 

mentioned above, a class does not necessarily have to create the other service, as is 

done here.  It could also be given a reference to the other service it wishes to use, 

rather than creating and deleting it. 



 285 

In the example above, the ME88mod service is a client of the SpecularEstimator 

service, which does not perform callbacks.  If a service was to be the client of a 

second service which did implement callbacks, it would of course have to implement 

the interface that lists the callback function(s) for that service, just like any other 

client. 

 

A second way that one service could become the client of another service, rather than 

it making itself a client, would be for a third party to register it with another service.  

For example, if the central control class created service A and service B, it could 

register service A as a client of service B by calling B.registerClient and passing a 

pointer to service A (as long as service A implements service B’s callback interface).  

While service A would not make any calls on service B, it would receive all callbacks 

that service B sends out.   

 

An example of the above situation would be for the central control class to create a 

mapping service and a localisation service, and to register the localisation service as a 

client of the mapping service.  While the localisation service would initially have to 

work off a small map that’s not very well defined (the robot is in a new, previously 

unexplored environment), as the mapping service created a better map it would send 

updates to the localisation service, which would then be able to make more accurate 

estimations as to the robot’s position because it had more information regarding the 

environment. 



 286 

Map Storage Classes 

There are three classes used to store grids and maps.  These are GridBlock, Grid3D 

and GridMap.   

 

 

The GridBlock class is a fixed size grid that stores the values.  Grid3D arranges many 

GridBlock objects to form a dynamically sized map, and GridMap, a child of the 

Grid3D class, provides a number of additional operations to be performed upon a 

map. 

 



 287 

GridBlock Class 

The GridBlock class is very simple.  It is essentially a 2D or 3D array which, once 

initialised, is of fixed size.  The object can be initialised with the parameters: 

• blockSize – the number of cells wide and high the block will be.  All 

GridBlocks are square. 

• defaultVal – the value to initialise all cells to. 

• blockHeight – How tall the block is. If this is set to 1 then the block is 

essentially a 2D array.  If it is any number greater than one then it is a 3D 

array. 

 

However, simply having a map of fixed size is not enough.  It is necessary for a map 

to be able to grow as big as needed, but also to only be as big as needed and no more.  

For this reason, multiple GridBlock objects can be organised into a quad-linked list by 

another class, the Grid3D class.  The GridBlock class contains six pointers, north, 

south, east, west, above and below.  The Grid3D class will use these to link each 

GridBlock object to other GridBlock objects in order to form a complete, dynamic 

map that can vary in size. 

 

The globOrigin parameter stores the block’s position in the overall map with the X 

position in the 1
st
 element of the array and the Y position in the 2

nd
 element of the 

array. 

 



 288 

Grid3D class 

The Grid3D class arranges one or more GridBlock objects in a lattice to create a 

dynamically sized map that grows as the user needs it.  It can be initialised with the 

parameters: 

• blockSize – The number of cells big a single GridBlock is.  The bigger this 

number the faster the search for a value will be, but the more wasteful of 

memory it is. 

• radius – the initial size (in GridBlocks) of the map. 

• unknown – the default value of the map.  If the value of a cell has not been set 

and the user asks for its value, then this unknown value is set. 

• blockHeight – The height of the map. If this is set to 1 then it is a 2D grid. 

 

To set the value of a cell in the map, use the updateGridRef function.  The first 

parameter is the value to set, and the last three values are the (X,Y,Z) grid position of 

the cell.  If the map is not big enough at the current time, so that this grid reference 

does not exist in memory, then the map is grown in the direction of the cell until it is 

big enough.  For example, if the required cell is to the north of the map, a new row of 

GridBlocks is added to the northern end of the map until it a GridBlock that contains 

the required cell. 



 289 

 

To retrieve the value of a cell, use the getGridRef function, once again with the 

(X,Y,Z) position of the cell.  If the value of the cell has not been set, then the value 

that unknown was set to in the constructor (0 is the default value) is returned.  If the 

cell does not exist in memory (i.e. if it is outside the map) then unknown is also 

returned. 

 

The map can be saved and loaded with the save and load functions. 

 

To find the size of the map, including the complete area covered by the GridBlocks in 

memory, whether they have been updated by the user or not, use the getDimensions 

function.  This takes as its parameter one of six #defined variables, NORTH, SOUTH, 

EAST, WEST, ABOVE, and BELOW.  When NORTH is passed to the function, it 

gives the Y position of the cell that is furthest north.  The same goes for the others. 

 

To find the size of the map that has actually been updated by the user (which is often 

smaller than the total cells actually held in memory), use the function 

getUpdatedDimensions.  This takes one of the four constants NORTH, SOUTH, 

EAST or WEST as parameters. 

 

 



 290 

GridMap class 

The GridMap class is a child of the Grid3D class, and can therefore do everything 

that the Grid3D class can do, except for the fact it can only be a 2D map, and not a 3D 

map. It also has a number of additional abilities.  

 

• It can shrink the map using the reduceDimension function.  It also has an 

enhanced version of the copy function from the Grid3D class that can be used 

to copy a shrunk version of the map being copied rather than simply copying it 

exactly.  The degree to which it is to be reduced is set using the reduceFactor 

variable.   A value of 1 (the default) means that no reduction is performed.  

The only values supported are 1, 4 and 9. 

• Blurring – the map can be blurred either in a simple, box-blur fashion using 

the boxBlur function, or in a gaussian-blur way using the gaussBlur function.  

In both of these, the higher the kernelSize variable the more the maps are 

blurred.  In boxBlur, the overall ‘brightness’ of the map can be increased using 

the boxVal variable.  The higher it is, the more the value of the cells will be 

raised.  The default value of 1 means that the map is just blurred, with no 

brightness alteration being performed.  

• Importing/Converting Saphira’s .wld files -  If the GridMap class is being 

used on Linux, it can import the world files in use by Saphira, and convert the 

line-based maps into grid cells using the importPointMap function.  The value 

variable is the value to set the cells that a line passes through.  The squareSize 

variable tells the function what the scale of the map is.  For example, if it is set 

to 100 (the usual value), it means that each represents a square of 100mm * 

100mm to a side in the real world. 



 291 

• Adding lines to the map – the addLine function can be used to add a line to the 

map.  You must give it the start (x,y) position and the end (x,y) position of the 

line.  Note that these values are in mm, and the real position of the lines in the 

environment, rather than cell coordinates.  For this reason, the squareSize 

parameter must also be set, as in the importPointMap function above. 

• Correlation – One GridMap can be compared to another to get a correlation 

value between them using the correlate function. 

• Score Map – One GridMap can be compared to another to get a score, which 

is the squared difference between them by using the scoreMap function. 

• Configuration Space Generation – a map can be converted to its ‘configuration 

space’ equivalent using the growOccAreas function.  This essentially expands 

each obstacle by half the width of the robot so that it shows places the robot 

can and cannot go, rather than just the map.  The radius of the robot must be 

provided to it in millimetres, as well as the lowerBound and upperBound of 

what is considered to be an occupied area.  For example, we may only want to 

expand cells with values between 0.8 and 1.0.  Finally, it must be supplied 

with the squareSize of each cell, with the default being 100mm to a side. 

 

 

 



 292 

 

 

Fig 1 Overall view of the robot control architecture currently under development in the 

University of Limerick robotics group.  

 

 


