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Abstract. Map building is a natural and often underestimated prop-
erty of biological entities. Such entities posses highly developed senses
such as touch, sight and hearing. Such abilities allow the development of
cognitive maps from which paths through complex environments can be
developed through the use of depth perception and location recognition.
In this paper we consider the effect that algorithmic extensions designed
to deal with the problems of redundant information and erroneous sen-
sory data have on the results of robotic mapping. We accomplish this
by evaluating several configurations of these extensions using identical
test data. Through evaluating the results of these experiments using an
extensible benchmarking suite that our group has developed we outline
which approach to the mapping problem yields the greatest representa-
tional ability.
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1 Introduction

The performance of an autonomous mobile robot in acquiring a meaningful spa-
tial model of its operating environment depends greatly on the accuracy of its
perceptual capabilities. As it operates in the environment the robot gathers sen-
sory information and subsequently incorporates this into a representation of the
environment. The field that is concerned with such issues is known as robotic
mapping and is a highly active research field in AI and mobile robotics.

The traditional approach, in the robotic mapping field, to recovering such infor-
mation is based on the use of a tessellated 2D grid known as an Occupancy Grid
(OccGrid) [1]. OceGrid’s store, fine grained, qualitative information regarding
which areas of the robots operating environment are occupied and which are
empty. Specifically each individual cell in the grid records a certainty factor re-
lating to the confidence that the particular cell is occupied.

In mobile robotics one of the most popular sensors used is ultrasonic sonar due to
its low cost, its speed of operation and ease of use. These sensors report relative
distances between the actual unit and obstacles located within their percep-
tual cone. This means that an obstacle, if detected, may be located somewhere
within the sonar cone at the distance specified. However, despite their advan-
tages, sonars are prone to error in measurement due to such factors as wave
reflection and absorption etc. This introduces uncertainty into the map building
process which can reduce the overall quality of the maps created. Catering for
such ambiguity is the reason that robotic mapping is such a difficult problem|[2].
We present a comprehensive analysis of the effect that techniques designed to
deal with the problems of redundant information and erroneous sensory data
have on robotic mapping. Specifically we consider:

— Pose Buckets[3]
— Feature Prediction[4]
— Neural Network based specular reading detection[5]

Pose buckets are a means of dealing with redundant information during the map-
ping process that were originally developed by Konolige as part of his MURIEL
(Multiple Representation, Independent Evidence Log) mapping method [3]. Fea-
ture prediction and neural network based specular reading detection are both
means of dealing with the problem of erroneous readings which may be received
during operation. These techniques are expanded on in the following section.

We use four standard mapping paradigms, [1,3,5,6], augmented with the tech-
niques mentioned above, as the basis for our experimentation. The paradigms
are evaluated using identical testbed data and benchmarks from a suite which
we have specifically designed for empirical evaluation of robotic mapping. This
allows the determination of which technique or combination of technique pro-
vides a mobile robot with the greatest environmental representational ability.

The remainder of this paper is structured as follows. Section 2.1 provides
an overview of four the mapping paradigms with section 2.2 outlining the tech-
niques for dealing with redundant and specular information. Section 3 outlines



the benchmarking techniques used in our evaluation and section 4 outlines the
experimental configuration and results obtained. Section 5 presents analysis of
the results and section 6 provides the final conclusion

2 Occupancy Grid Mapping and Techniques for Dealing
with Uncertainty

2.1 Occupancy Grid Mapping

The problem of robotic mapping is that of acquiring a spatial model of a robots
environment. An occupancy grid is a tessellated grid with each individual cell in
the grid recording a certainty factor relating to the confidence that the particular
cell is occupied. For the purposes of the evaluation outlined herein we utilise four
established mapping techniques which we slightly modify so as to incorporate
the various algorithmic extensions. The specific mapping techniques are:

— Moravec and Elfes - 1985, probabilistic framework][1]
— Matthies and Elfes - 1988, Bayesian framework [6]
— Thrun - 1993, neural network based approach [5]

— Konolige - 1997, enhanced Bayesian framework [3]

The following provides a brief overview and analysis of these techniques. For
further information the reader is referred to the referenced publications.

Moravec and Elfes - 1985: this technique generates two intermediate models,
an empty map Emp and an occupied map Occ, which are subsequently integrated
to form a final domain representation. The sensory beam uses a binary classi-
fication with cells being in either the free-space or the surface (occupied) area.
A two dimensional Gaussian sensor model is used to calculate the probability
of the cell being empty if it is in the free-space area and likewise for occupied
cells in the occupied area. The map update used by this technique is heuristic in
nature with the probability of a cell being empty integrated into Emp and like-
wise the probability of a cell being occupied being integrated into the Occ map.
Finally the Emp and Occ maps are combined into a single representation with
a thresholding step where the larger value for each cell is chosen for inclusion in
the map.

The first limitation with this technique comes from the fact that specular re-
flection is not considered. Specular reflection occurs when the sensory (in this
context sonar) beam reflects of multiple surfaces and then either returns or does
not return to the emitter, causing an erroneous reading in either case. This
causes areas to be incorrectly labelled as unoccupied, or an unoccupied area to
be incorrectly labelled as occupied. The second issue comes from the fact that
when dealing with cells in the Occ and Emp maps once the probability value as-
sociated with a cell converges to a certainty of 1, the probability value associated
with that cell cannot be altered by any future evidence.



Matthies and Elfes - 1988: this approach used the same sensory model as
Moravec and Elfes for the purposes of sensor interpretation in their approach.
However they did develop a more rigorous Bayesian based map updating formula
which replaces the heuristic method from Moravec and Elf’s - 1985 approach.
There are two main disadvantages to using the Bayesian update formula intro-
duced in this approach. Firstly a single update can change the occupancy value
of a cell drastically which means that cell values can fluctuate. The second dis-
advantage is that once a cell has converged to certainty i.e. either 0 or 1 the
occupancy value cannot be changed.

Thrun - 1993: this method outlines an occupancy grid mapping approach
which utilises neural networks (NN). The sensory interpretation aspect of this
algorithm is implicitly defined in the sensor interpretation network which reports
values in the range <0...1> for the sensory readings that it is presented with.
Certainty values relating to these readings are determined through the second
network, the confidence network. The map update procedure in this technique
is similar to that in Matthies and Elf’s - 1988 approach.

The limitation of this approach arises form the nature of NN’s. When dealing
with NN’s it is desirable to train the network until convergence. However it is
not practical to train the sensor interpretation network to convergence in this
context. This is because to do so would encode environmental characteristics in
addition to sensory characteristics in the network which makes evaluating the
quality of the sensory model developed an issue.

Konolige - 1997: this method also uses a sensory model which separates the
sensory model into occupied and empty sections. However in this case an iden-
tical formula is used for both with a probabilistic profile determining whether a
cell is in the free-space or occupied part of the sensory beam. He also introduced
"Pose Buckets’ as a means of dealing with redundant information and tackled
the problem of specular sensory information through probabilistic inference. For
purposes of updating the map the Konolige’s method combines the probability
of the cell being occupied and empty using a logarithmic technique.

One issue with this approach is the way in which specularity estimation is ap-
plied to individual cells. Specifically if a cell is very confident of the specularity
of a sonar reading then this should be propagated to all cells in the sonar beam
not just the cell itself as there is a great deal of inter-dependence between cells
in a sonar beam. Also when a sonar reading is given a high probability of spec-
ularity the effect of that reading on the map should be reduced. However the
technique deals with the free-space segment of the sonar beam. It would be desir-
able if both the free and occupied segments of the beam were considered. Finally
the assumption is made that environmental surfaces are distributed randomly
and that the probability density of a reflection from such a surface is constant.
However while this may be true in the simplified case no justification of this
assumption is presented for the general case.



2.2 Techniques for Dealing with Uncertainty During Mapping

The previous section outlined standard approaches to the robotic mapping prob-
lem. However for all mapping approaches unreliability of information obtained
from sensors is a major issue when dealing with robotic map building. This issue
is characterised by two problems, redundant information and specular reflection.

— Redundant Information The assumption is made that each new sensor read-
ing gives new information, whereas the actual case may be that the infor-
mation is simply repetition of what has been previously sensed which would
be reflected in the associated cell probabilities resulting in a biased view of
the world.

— Specular Reflection The energy emitted from a sensory device is scattered
off a surface before returning to the sensor or is reflected at a wide angle
and subsequently never returns to the device which results in the sensor
reporting incorrect readings.

Currently in the domain there exists very little quantative information regard-
ing the tackling of such issues. Therefore in this paper we empirically evaluate
techniques developed to address these problems. Specifically we consider two
techniques designed to deal with the specular reflection problem, Feature Pre-
diction (FP) and a Neural Network based technique (NN). We also consider the
problem of redundant information through Konolige’s Pose Buckets (PB).

2.3 Removing Redundant Information

When dealing with OccGrid mapping, a simplifying assumption of conditional
independence is made. This states that each cell in a map has no effect on any
other cell, and that each sensory reading received is independent of all other
readings. Using the concept of conditional independence, a map is constructed
by taking sensor readings from many different positions and angles. However
there often arises the case where the robot is stationary. The issue with this
scenario is that no new information is being added to the map after the first
reading was obtained from the position. Each successive reading is clearly not
independent of the one that came before, it is, in fact, conceptually the same.
PB’s were designed to deal with this issue. They utilise an OccGrid map which
has a dual representation. Each constituent cell of the map represents both
the occupancy of the area and the 'pose’ of readings that have effected that cell.
Therefore PB’s essentially store a binary variable stating whether a reading from
a given distance and angle has affected a particular cell or not. This variable is set
to true when the first reading from a particular pose is received, and all following
readings from that pose for the particular cell are subsequently discarded. This
is because they are merely duplicating information already incorporated into the
model.

The original specification of PB’s effectively addressed the problem of redundant
information affecting the construction of the map. However, there are some issues
with the technique. The main issue with PB’s is that it is conceivable that due



to their manner of dealing with received sensory readings, i.e. accept the first
reading received as being illustrative of the true state of the environment, some
useful information could be discarded. However work recently completed within
the group, [7], addressed this problem and it is this enhanced version of PB’s
that we utilise.

2.4 Dealing With Erroneous Sensor Readings

Feature Prediction: it is commonly assumed that during the mapping process
each sensory reading received is a completely independent entity. The readings in
a set are not independent, however, and as such the readings from one sensor can
be used to determine the validity of other readings in the overall set, particularly
neighbouring readings. Feature prediction is a method for detecting specular
sonar readings based on exploiting these facts.

Feature prediction works by identifying reliable readings in each reading-set
and from these determines the position and orientation of the features in the
environment that causes the wave reflection. Subsequently from this a confidence
value can be determined for each individual reading in the reading set.

This means that it is necessary to make predictions about the state of a cell
before receiving any correct information relating to the cell. Such predictions
can be made based on sonar readings received which don’t directly affect the
particular cell in question and also on the behaviour of a sonar beam in a noisy
environment. This is possible as the environment contains structural regularities
such as walls that can be approximated using straight line segments. Therefore
during operation feature prediction uses three models of the environment, a
sonar map, a local map and a global map. The sonar map is a stateless model
which contains features, which are essentially straight line segments, that have
been extrapolated from the current sonar readings set. Therefore this map is
a localised one representing the state of the environment in the vicinity of the
robot as extrapolated from the readings reported by the sonars. The local map
maintains a set of features that have been estimated from previous readings,
but only from the area withing the immediate vicinity of the robot. That is, the
local map is also a localised representation of the environment in the vicinity
of the robot, however it has been extrapolated from historical readings and
not the readings reported at the current time-step. The creation of a feature set
from these two maps in conjunction with a check for consistency between sensory
readings in the current reading set is used as a basis for determining a confidence
value for each sensor reading. These confidence estimates are subsequently used
as a basis for influencing the effect that the reading has on the global map.
More information of FP can be found in [4,7] .

Using Neural Networks: in [5], Thrun outlines an OccGrid mapping ap-
proach which utilises neural networks (NN). In this approach a network known
as the sensor interpretation network (R) is used to compute the occupancy val-
ues for each individual cell in the overall map and a separate network, known as



the confidence network (C), is used to calculate a confidence estimation for each
sensory reading received.

As can be appreciated there are similarities between this approach to the de-
tection of erroneous readings and FP. However FP works on the macro level,
considering a world centric view of the current situation whereas the neural net-
work based approach considers a more robot centric view. That is, the network
based approach bases it’s determination of specularity on consistency between
readings in the current reading set. FP on the other hand bases its determina-
tion on extrapolation from a historical perspective. Therefore, in theory, both
techniques are complimentary.

The NN approach operates as follows. In relation to a cell of interest the network
is presented with the following inputs:

— The four sensor readings closest to the cell of interest < z,y >
— The relative angle, @, to the cell of interest
— The relative distance, d, to the cell of interest

The use of relative measurements removes the need for the network to model
the global co-ordinate system. The network is trained using the classic Back-
Propagation algorithm to output a scalar in the range <0,1> which is an error
estimate relating to the particular reading r. The training examples used during
training consist of the inputs outlined earlier and the desired, error value for
the particular reading that is being dealt with in that particular instance. To
facilitate data acquisition the robot obtains the training inputs and subsequent
desired output through operation in a known, or idealised, environment. The ac-
tual idealised environment is constructed manually prior to the data acquisition
thereby allowing the desired network outputs to be accurately determined.

As the confidence network estimates the expected error relating to a particular
reading the confidence in the reading is low if the output from the network is
high and vice versa. It is straight forward to use this error estimate as a means
of registering specular readings.

As mentioned previously the aim of this paper is to consider the effect that
techniques designed to deal with the problems of redundant information and
erroneous sensory data have on the results of robotic mapping. Toward this
end the extensions outlined previously were incorporated into the four mapping
approaches outlined in section 2.1 to arrived at augmented versions of these
approaches. The specific changes made were:

— Feature prediction was added to each of the approaches to help deal with
the problem of specular readings.

— An enhanced version of Konoligie’s Dynamic Mixture Model was added to
each of the techniques. This is a mechanism that complements pose buckets
and allows for improved detection of specular reading.

— Pose buckets were added as an additional feature to the mapping methods.

These augmented mapping versions were subsequently used as the experimental
basis.



3 Benchmarking Techniques

The purpose of this paper is to determine which algorithmic extension, or combi-
nation of extensions are the most effective in the context of robotic mapping. To
actually determine this maps generated using the extensions must be evaluated.
Toward this end we use an extensible suite of benchmarks which allow for the
empirical evaluation of map building paradigms [8]. This suite includes utilising
techniques from image analysis, techniques designed specifically developed for
the evaluation of OccGrid maps in addition to techniques designed to evaluate
the usability of a generated map by a robot.

1. Correlation: As a generated map is similar to an image it is possible to use a
technique from image analysis known as Baron’s cross correlation coefficient
[9] as a basis for evaluating the map. With this metric a higher percentage
indicates that the map being tested has a high degree of similarity to an
ideal map of the environment.

2. Map Score: This is a technique originally proposed by Martin and Moravec
in [10] which calculates the difference between a generated map and an ideal
map of the environment. The lower the percentage difference the greater the
similarity between the two maps.

3. Map Score of Occupied Cells This metric is similar to the previous one but
only tests those cells in the map that are occupied. This metric address
the weakness in the first map score metric that mapping techniques which
over-specify free space could achieve a better score than maps which identify
obstacles more accurately. The reason for this is that in many environments
there are large amounts of bounded unoccupied spaces with perhaps a few
small obstacles distributed within that space. Therefore there are often more
unoccupied than occupied cells. When determining the map score there are
few occupied cells with which to correctly determine the correct state of
affairs and hence an erroneous results is achieved. To tackle this problem
the second map score metric is used.

4. Path Based Analysis: To fully evaluate a generated map its usefulness to a
mobile robot must be considered, as the main context in which such maps
are used is for the completion of tasks such as navigation. Therefore simply
evaluating a map against a perfect snapshot of the operating environment is
unrealistic as a map might still be usable to a robot without being a com-
pletely faithful representation. Specifically if the map provides an abstraction
of the environment with which a path planning algorithm can specify navi-
gable real world paths then the map can be used. Therefore it is the quality
of these paths that indicates the value of the map and the subsequent map
evaluation is based on testing two elements:

— The degree to which the paths created in the generated map would cause
the robot to collide with an obstacle in the real world, and are therefore
invalid. These are known as false positives.

— The degree to which the robot should be able to plan a path from one
position to the another using the generated map, but cannot. These are
known as false negatives.



Obtaining an overall score Each of the previous benchmarks evaluate a map
within a specific context. However arriving at an overall classification using the
benchmarks requires specific domain knowledge, which is an inhibitor to their
generalised use. Therefore, to allow an overall score to be determined and also
preserve the metric inter relationships, we developed an amalgamation technique.
The result provided by this classification scheme can be used as a basis for
comparison of the individual mapping techniques.
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In the above, CLS is the overall classification score obtained M is the overall
set of maps in an experiment subset, map is a particular map within the set of
maps M, CT is a normalising constant that accounts for the inverse benchmark
relationships, MapScore,;; is the result from the Map Score metric applied to
all cells in the applicable map, MapScore, ., is the result from the Map Score
metric applied to the occupied cells in the maps, B, is the result obtained from
Correlation, FP is the result obtained from the False Positive path analysis met-
ric and FN is the result obtained from the False Negative path analysis metric.
This rule combines the normalised certainty factors from the five benchmarks in
a manner that is consistent with the differing orientations of the benchmarking
techniques.

4 Results

The experimentation carried out for this evaluation consisted of testing the aug-
mented mapping approaches with identical data obtained from a number of runs
in two test environments. To ensure statistical validity, in total there were three
runs completed in each environment. To fully determine the contribution that
the extensions outlined previously have on the mapping process we ran a number
of experiments which used combinations of the extensions. In total eight config-
urations were utilised, table 1 (where, again, FP represents Feature Prediction,
PB represents Pose Buckets, NN represents Neural Network based reading confi-
dence estimation). In the following table N, represents the fact that a particular
technique was not used in a particular configuration state and likewise Y repre-
sents the case that the technique was used.



Reference FP PB NN

Configl N N N
Config2 Y N N
Configd Y N Y
Configd Y Y N
Configb N Y N
Config6 N N Y
Config7 N Y Y
Config8 Y Y Y

Table 1: Combinations of techniques

We used the eight configurations outlined in table 1 as the basis for specific
experiments. Each of the four mapping systems was configured according to this
discretisation and used to generate a number of OccGrid maps. We used two dif-
fering test environments and as mentioned three separate runs were completed
in each environment. This means that the results presented in this paper are
obtained from analysing a total of 192 OccGrid maps.

Table 2 presents the overall results from the experimentation. Therein ME85
represents the augmented version of Moravec and Elfes 1985 mapping technique
which was used in the experimentation and ME88, K97, T93 represent the aug-
mented versions of Matthies and Elfe’s, Konoligie’s and Thrun’s techniques from
1988, 1997 and 1993 respectively. Figure 1 present some illustrative maps gener-
ated by Konolige’s method using configurations one, two, five and six from table
1 in addition to an ideal map of the environment which is provided for reference.

Key|Reference ME85 MES8 K97 T93

Config 1 0.42 047 0.52 0.42
Config 2 0.54 0.55 0.61 0.48
Config 3 0.54 0.55 0.60 0.48
Config4 0.64 0.51 0.62 0.52
Config 5 0.47 0.47 0.63 0.44
Config 6 0.46 0.63 0.54 0.44
Config 7 0.44 0.55 0.56 0.43
Config 8 0.64 0.51 0.60 0.48

Table 2: Experiment Results

==NoRS N RwNeNec kg

5 Analysis

The results outlined in the previous section originated from experiments aimed at
evaluating the overall contribution made by the various extensions to the robotic



Ideal Map

Config 1 Config 2 Config 5 Config 6

Fig. 1. Ideal map and some illustrative maps generated during experimentation

mapping paradigm. The tests have shown that these extensions do have a positive
effect on the overall accuracy of the maps constructed by the various systems.
The tests have also shown that various extensions or combinations of extensions
have a tendency to promote improved performance in various systems while
simultaneously not generating the same enhancement in other mapping systems
which is a direct result of the characteristics of the actual systems themselves. In
the following, as per table 2 ME85 refers to the augmented version of Moravec
and Elfe’s 1985 approach [1], MES8 refers to the augmented version of Matthie
and Elfe’s 1988 approach [6], K97 to the augmented version of Konoligie’s 1997
approach [3] and T93 to the augmented version of Thruns 1993 approach [5]
mapping systems which were used as the basis for the experimentation outlined
herein. The following analysis considers the results from the context of the overall
classification that we are evaluating i.e. sensory reading critique through FP and
NN and redundant information filtering through PB.

Reading Confidence Estimation The experimental configurations from table
1 that involved determining a confidence estimate were configurations two, three,
six which relate to the results in table 2 B,C and F. As the results show the use
of feature prediction on its own, the use of feature prediction in conjunction with
neural network based confidence estimation and the use of neural network based
confidence estimation on its own all promoted more of a general improvement
in the K97 and ME85 mapping systems than in the ME88 or the T93 systems.
This can be attributed to the fact that there is a conceptual similarity in the
mechanisms used by ME88 and T93NN which cause them to have similar per-
formance characteristics when presented with filtered operational data. These
trends show that these two drastically differing approaches to the problem of
specularity are compatible and ultimately achieve the same aims.

Redundant Information Filtering On this occasion we are considering con-
figuration five from table 1 and table 2 E. When pose buckets were used on their
own in conjunction with the mapping systems there was an improvement in the



overall performance of the systems. Again K97 profited more from the removal of
redundant information by the pose buckets. However as the results have shown
K97’s performance in relation to false negative paths was poor. This is because,
while pose buckets believe both free-space and occupied readings equally they
ensure that there is at most a difference of one reading between the number of
free and occupied readings from any given position. This is because K97’s slight
favouring of occupied space over empty space will effect the ability of the the
free space readings from altering the incorrect occupied readings registered with
the pose buckets.

Reading Confidence Estimation in conjunction with Redundant Infor-
mation Filtering In this case we are considering configurations four and seven
i.e. table 2 D and G. When feature prediction and pose buckets were used to-
gether there was a slightly better performance than the case where pose buckets
were used in conjunction with the neural network based confidence estimation.
This shows that pose buckets are more compatible with algorithmic rather than
a learned means of critiquing sensory readings. This is because of the overlap
in their performance i.e. if one of the filtering mechanisms fails to identify an
erroneous reading the pose buckets will generally deal with it and vice versa.
However feature prediction maintains an explicit historical record which serves
as the basis for determining the erroneous readings which the neural network
based approach does not. This means that feature prediction is slightly more
subtle in its removal of readings due to its historical perspective whereas the
network based approach is more harsh i.e. there exists the possibility that the
network based approach will regard more readings as erroneous that the algo-
rithmic method due to its temporally localised nature. As an aside the extension
of the network based approach so as to utilise historical data was considered
but as this change would render a significant amount of the operational context
of the network redundant the extension was not considered for inclusion in the
experimentation outlined herein.

Using all extensions Here we are considering configuration eight from table
1 and table 2 H. When all three extensions were used together the overall result
was that the performance was similar to the case where only feature prediction
and pose buckets were used. This can be attributed to the fact that, as men-
tioned above, feature prediction and neural network based confidence estimation
do perform essentially the same job feature prediction can be slightly more sub-
tle than the network based approach to reading critique. Essentially this means
that when both techniques are used in conjunction with pose buckets the fea-
ture prediction will catch any readings that the network based approach missed
which means that feature prediction is the dominant reading critique mechanism.
Therefore the results are similar in this case to the scenario where the network
based approach was not used. However as can be seen the performance for all
mapping systems has improved when compared to the configuration where we
do not use any of the extensions, table 2 A.



6 Conclusion

In this paper we have presented an analysis of algorithmic extensions, which are
designed to deal with the problems of redundant information and erroneous sen-
sory data in robotic mapping. We have outlined a benchmarking suite developed
to allow empirical evaluation of such maps and used it to evaluate the impact of
the extensions. Our results have shown that Feature Prediction, Pose Buckets
and Neural Network Based reading critique all serve to enhance the performance
of the mapping process resulting in the creation of accurate and usable maps of
a robots operating environment. However, as the results have shown, the neural
network based enhancement has a negligible impact on the overall performance
of the systems.
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